Science, Technology, Engineering and Mathematics.
Open Access

A REVIEW OF RESEARCH ON EMOTIONAL STATE ANALYSIS IN SOFTWARE DEVELOPMENT

Download as PDF

Volume 6, Issue 1, Pp 16-24, 2024

DOI: 10.61784/jcsee240121

Author(s)

Simon Park

Affiliation(s)

Department of Electrical Engineering, University of Hawai, Honolulu, HI, USA.

Corresponding Author

Simon Park

ABSTRACT

Software development is a complex task. In recent years, emotions in software development activities have received more and more attention. On the one hand, researchers focus on using text sentiment analysis to obtain emotional states in software development, study how to improve the analysis accuracy of existing sentiment analysis tools in the field of software development, and propose effective sentiment analysis tools or methods for the field of software development; on the other hand, researchers focus on using text sentiment analysis to obtain emotional states in software development. On the other hand, researchers have also conducted empirical research on the emotional state and its influencing factors and effects in software development through actual project data. This article explains the emotional state in software development in recent years from the aspects of the current situation of emotional analysis, emotional characteristics in software development, some mainstream tools and main methods of emotional analysis, existing empirical research, and research on the impact of emotion on software development. Current research status of analysis. Finally, some existing problems and future development trends of sentiment analysis in software development are prospected.

KEYWORDS

Sentiment analysis; Opinion mining; Software engineering; Open source community

CITE THIS PAPER

Simon Park. A review of research on emotional state analysis in software development. Journal of Computer Science and Electrical Engineering. 2024, 6(1): 16-24. DOI: 10.61784/jcsee240121.

REFERENCES

[1] Murgia A, Tourani P, Adams B. Do developers feel emotions? an exploratory analysis of emotions in software artifacts//Proceedings of the 11th Working Conference on Mining Software Repositories(MSR), ACM, 2014:262-271.

[2] Girardi D, Lanubile F, Novielli N. Sensing developers' emotions: the design of a replicated experiment//IEEE/ACM 3rd International Workshop on Emotion Awareness in Software Engineering (SEmotion), IEEE, 2018:51-54.

[3] Mntyl M, Adams B, Destefanis G. Mining valence, arousal, and dominance: possibilities for detecting burnout and productivity?//Proceedings of the 13th International Conference on Mining Software Repositories(MSR), ACM, 2016:247-258.

[4] Ortu M, Murgia A, Destefanis G. The emotional side of software developers in JIRA//Proceedings of the 13th International Conference on Mining Software Repositories(MSR), ACM, 2016: 480-483.

[5] Pessoa L. On the relationship between emotion and cognition. Nature Reviews Neuroscience, 2008, 9(2): 148-158.

[6] Storey M A. The evolution of the social programmer//Proceedings of the 9th IEEE Working Conference on Mining Software Repositories(MSR), IEEE Press, 2012: 140-140.

[7] Gachechiladze D, Lanubile F, Novielli N. Anger and its direction in collaborative software development//IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER), IEEE, 2017: 11-14.

[8] De Choudhury M, Counts S. Understanding affect in the workplace via social media//Proceedings of the 2013 Conference on Computer Supported Cooperative Work, ACM, 2013: 303-316.

[9] Ortu M, Adams B, Destefanis G. Are bullies more productive?: empirical study of affectiveness vs. issue fixing time//Proceedings of the 12th Working Conference on Mining Software Repositories(MSR), IEEE Press, 2015: 303-313.

[10] Calikli G, Al-Eryani M, Baldebo E. Effects of automated competency evaluation on software engineers' emotions and motivation: a case study//IEEE/ACM 3rd International Workshop on Emotion Awareness in Software Engineering (SEmotion ), IEEE, 2018:44-50.

[11] Kuutila M, Mntyl M V, Claes M. Daily questionnaire to assess self-reported well-being during a software development project//Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering(SEmotion), ACM, 2018:39-43.

[12] Graziotin D, Fagerholm F, Wang X. Consequences of unhappiness while developing software//Proceedings of the 2nd International Workshop on Emotion Awareness in Software Engineering(SEmotion), IEEE Press, 2017:42-47.

[13] Sarkar S, Parnin C. Characterizing and predicting mental fatigue during programming tasks//Proceedings of the 2nd International Workshop on Emotion Awareness in Software Engineering (SEmotion), IEEE Press, 2017: 32-37.

[14] Pang B, Lee L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2008, 2(1-2): 1-135.

[15] Guzman E, Az6car D, Li Y. Sentiment analysis of commit comments in GitHub: an empirical study//Proceedings of the 11th Working Conference on Mining Software Repositories (MSR ), ACM, 2014: 352-355.

[16] Pletea D, Vasilescu B, Serebrenik A. Security and emotion: sentiment analysis of security discussions on GitHub//Proceedings of the 11th Working Conference on Mining Software Repositories (MSR), ACM, 2014: 348-351.

[17] Sinha V, Lazar A, Sharif B. Analyzing developer sentiment in commit logs//Proceedings of the 13th International Conference on Mining Software Repositories(MSR), ACM, 2016:520-523.

[18] Tourani P, Jiang Y, Adams B. Monitoring sentiment in open source mailing lists: exploratory study on the apache ecosystem//Proceedings of 24th Annual International Conference on Computer Science and Software Engineering(CSSE), IBM Corp, 2014:34-44.

[19] Cambria E. Affective computing and sentiment analysis. IEEE Intelligent Systems, 2016, 31(2): 102-107.

[20] Taboada M, Brooke J, Tofiloski M. Lexicon-based methods for sentiment analysis. Computational Linguistics, 2011, 37 (2): 267-307.

[21] Cambria E, Schuller B, Xia Y. New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 2013, 28 (2): 15-21.

[22] Collobert R, Weston J, Bottou L. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 2011, 12(8): 2493-2537.

[23] Mikolov T, Chen K, Corrado G. Efficient estimation of word representations in vector space. arXiv preprint arXiv: 1301.3781, 2013.

[24] Araque O, Corcuera-Platas I, Sanchez-Rada J F. Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 2017, 77(C): 236-246.

[25] Ram A, Nagappan M. Supervised sentiment classification with CNNs for diverse SE datasets. arXiv preprint arXiv: 1812.09653, 2018.

[26] Thelwall M, Buckley K, Paltoglou G. Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 2012, 63(1): 163-173.

[27] Islam M R, Zibran M F. Towards understanding and exploiting developers' emotional variations in software engineering//IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), IEEE, 2016: 185-192.

[28] Guzman E, Bruegge B. Towards emotional awareness in software development teams//Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering(ESEC/FSE), ACM, 2013:671-674.

[29] Imtiaz N, Middleton J, Girouard P. Sentiment and politeness analysis tools on developer discussions are unreliable, but so are people//IEEE/ACM 3rd International Workshop on Emotion Awareness in Software Engineering (SEmotion), IEEE, 2018:55-61.

[30] Jongeling R, Sarkar P, Datta S. On negative results when using sentiment analysis tools for software engineering research. Empirical Software Engineering, 2017, 22(5): 2543-2584.

[31] Islam M R, Zibran M F. Leveraging automated sentiment analysis in software engineering//IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), IEEE, 2017:203-214.

[32] Ahmed T, Bosu A, Iqbal A. SentiCR: a customized sentiment analysis tool for code review interactions//Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering(ASE), IEEE Press, 2017: 106-111.

[33] Ding J, Sun H, Wang X. Entity -level sentiment analysis of issue comments//Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering(SEmotion), ACM, 2018:7-13.

[34] Calefato F, Lanubile F, Maiorano F. Sentiment polarity detection for software development. Empirical Software Engineering, 2018, 23(3): 1352-1382.

[35] Calefato F, Lanubile F, Novielli N. EmoTxt: a toolkit for emotion recognition from text//Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), IEEE, 2017:79-80.

[36] Novielli N, Girardi D, Lanubile F. A benchmark study on sentiment analysis for software engineering research//IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), IEEE, 2018: 364-375.

[37] Lin B, Zampetti F, Bavota G. Sentiment analysis for software engineering: how far can we go?//IEEE/ACM 40th International Conference on Software Engineering (ICSE), IEEE, 2018: 94-104.

[38] Ortu M, Destefanis G, Adams B. The jira repository dataset: Understanding social aspects of software development//Proceedings of the 11th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE), ACM, 2015, Article No. 1, DOI: 10. 1145/2810146. 2810147.

[39] Russell J A. Core affect and the psychological construction of emotion. Psychological Review, 2003, 110(1): 145-172.

[40] Destefanis G, Ortu M, Bowes D. On measuring affects of github issues' commenters//IEEE/ACM 3rd International Workshop on Emotion Awareness in Software Engineering (SEmotion), IEEE, 2018: 14-19.

[41] Blaz C C A, Becker K. Sentiment analysis in tickets for it support//IEEE/ACM 13th Working Conference on Mining Software Repositories (M SR), IEEE, 2016:235-246.

[42] Werder K. The evolution of emotional displays in open source software development teams: an individual growth curve analysis//Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering(SEmotion), ACM, 2018: 1-6.

[43] Ortu M, Destefanis G, Kassab M. Would you mind fixing this issue?//International Conference on Agile Software Development(XP), Springer, Cham, 2015: 129-140.

[44] Graziotin D, Wang X, Abrahamsson P. Are happy developers more productive?//International Conference on Product Focused Software Process Improvement (PROFES ), Springer, Berlin, Heidelberg, 2013:50-64.

[45] Garcia D, Zanetti M S, Schweitzer F. The role of emotions in contributors activity: a case study on the Gentoo community//International Conference on Cloud and Green Computing (CGC ), IEEE, 2013:410-417.

[46] Calefato F, Lanubile F. Affective trust as a predictor of successful collaboration in distributed software projects//IEEE/ACM 1st International Workshop on Emotional Awareness in Software Engineering (SEmotion), IEEE, 2016: 3-5.

[47] Khan I A, Brinkman W P, Hierons R M. Do moods affect programmers' debug performance? Cognition, Technology & Work, 2011, 13(4): 245-258.

[48] Jurado F, Rodriguez P. Sentiment analysis in monitoring software development processes: an exploratory case study on GitHub's project issues. Journal of Systems and Software, 2015, 104(C): 82-89.

[49] Novielli N, Calefato F, Lanubile F. The challenges of sentiment detection in the social programmer ecosystem//Proceedings of the 7th International Workshop on Social Software Engineering (SSE), ACM, 2015: 33-40.

[50] Claes M, MntylM, Farooq U. On the use of emoticons in open source software development//Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement(ESEM ), ACM, 2018, Article No. 50, DOI: 10. 1145/3239235. 3267434.

[51] Ferreira I, Stewart K. A longitudinal study on the maintainers' sentiment of a large scale open source ecosystem.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.