Science, Technology, Engineering and Mathematics.
Open Access

SOURCE ANALYSIS OF SULFUR DURING THIOSIDE BIOSYNTHESIS

Download as PDF

Volume 2, Issue 1, Pp 6-11, 2024

DOI: 10.61784/jtls240126

Author(s)

Nicole Reid

Affiliation(s)

Christian-Albrechts-University, Germany.

Corresponding Author

Nicole Reid

ABSTRACT

Glucosinolates are a type of secondary metabolite rich in nitrogen and sulfur in Cruciferae plants. A lot of progress has been made in the research on the synthesis pathway of glucosinolates, especially the relationship between sulfur and glucosinolates synthesis. Sources of reduced sulfur donors, sources of activated sulfate, as well as cysteine (Cys), glutathione (GSH) and the high-energy sulfur donor 3′adenosine phosphate 5′phosphoryl sulfate ( This paper reviews the research progress of sulfur sources in the process of glucosinolate synthesis, including the relationship between primary sulfur metabolites such as PAPS and glucosinolate synthesis, and proposes the balance between primary sulfur metabolism regulatory factors such as GSH, nitrogen and sulfur and other nutritional elements, and The regulatory mechanism of glucose and other signaling molecules on glucosinolate biosynthesis will become a new research hotspot, in order to provide a theoretical basis for research on the regulation of glucosinolate biosynthesis.

KEYWORDS

Botany; Glucosinolates; Biosynthesis; Glutathione (GSH); Primary sulfur metabolism

CITE THIS PAPER

Nicole Reid. Source analysis of sulfur during thioside biosynthesis. Journal of Trends in Life Sciences. 2024, 2(1): 6-11. DOI: 10.61784/jtls240126.

REFERENCES

[1] Liao Yongcui, Song Ming, Wang Hui. Identification and content analysis of glucosinolates in Chinese cabbage. Acta Horticulturae Sinica, 2011, 38(5): 963-969.

[2] BUSSY A. Note sur la formation de I'huile essentielle de moutarde. J Phamac Chim, 1840, 26(39): 815-817.

[3] Zhu Biao. Study on the effects of exogenous plant growth regulatory substances on pakchoi glucosinolates and expression of related synthetic genes. Hangzhou: Zhejiang University, 2012.

[4] Yuan Gaofeng, Chen Sixue, Wang Qiaomei. Research and application of biological effects of glucosinolates and their metabolites. Journal of Nuclear Agriculture, 2009, 23(4): 664-668.

[5] Liu Mengyang, Lu Yin, Han Wensu. Analysis of glucosinolate content and expression of related genes in Chinese cabbage resistant to Diamondback moth mutants. Journal of Agricultural Biotechnology, 2015, 23(3): 320-328.

[6] LIU Tongjin, ZHANG Xiaohui, YANG Haohui. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front Plant Sci, 2016, 7(1): 83. doi: 10.3389/fpls. 2016. 00083.

[7] KOS M, HOUSHYANI B, WIETSMA R. Effects of glucosinolates on a generalist and specialist leaf-chewing her-bivore and an associated parasitoid. Phytochemistry, 2012, 77(1): 162-170.

[8] BUXDORF K, YAFFE H, BARDA O. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One, 2013, 8(8): e70771. doi:10.1371/journal.pone.0070771.

[9] MARTINEZBALL M D, MORENO D A, CARVAJAL M. The physiological importance of glucosinolates on plant re- sponse to abiotic stress in Brassica. Int J Mol Sci, 2013, 14(6): 11607-11625.

[10] LIPPMANN D, LEHMANN C, FLORIAN S. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. Food Funct, 2014, 5(6): 1073-1081

[11] DINKOVA-KOSTOVA AT, KOSTOV R V. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med, 2012, 18(6): 337-347.

[12] Cheng Kun, Yang Limei, Fang Zhiyuan. Research progress on major glucosinolate synthesis and regulatory genes in Brassicaceae plants. Chinese Vegetables, 2010 (12): 1-6.

[13] GRUBB CD, ABEL S. Glucosinolate metabolism and its control. Trends Plant Sci, 2006, 11(2): 89-100.

[14] ZANG Yunxiang, KIM HU, KIM J A. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J, 2009, 276(13): 3559-3574.

[15] Zhang Yuanyuan. Functional analysis of several glucosinolate synthesis and regulatory genes in rape and Arabidopsis. Wuhan: Huazhong Agricultural University, 2015.

[16] Wu Yu, Gao Lei, Cao Minjie. Plant sulfur nutrition metabolism, regulation and biological functions. Bulletin of Botany, 2007, 24(6): 735-761.

[17] SONDERBY IE, GEUFLORES F, HALKIER B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci, 2010, 15(5): 283-290.

[18] Duan Xihua, Tang Zhonghua, Guo Xiaorui. Biosynthesis and biological functions of plant glutathione. Plant Research, 2010, 30(1): 98-105.

[19] Yan Huifang, Mao Peisheng, Xia Fangshan. Research progress on plant antioxidant glutathione. Journal of Grassland Science, 2013, 21(3): 428-434.

[20] Shan Changjuan, Dai Haifang. Effects of exogenous glutathione on physiological characteristics of corn seedling leaves under drought stress. Journal of Irrigation and Drainage, 2016, 35(1): 59-62.

[21] SHANKAR V, THEKKEETTIL V, SHARMA G. Alleviation of heavy metal stress in Spilanthes calva L. (antimalarial herb) by exogenous application of glutathione. In Vitro Cell Develop Biol-Plant, 2012, 48(1): 113-119.

[22] WU Zhichao, ZHAO Xiaohu, SUN Xuecheng. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere, 2015, 138: 526-536.

[23] JOZEFCZAK M, KEUNEN E, SCHAT H. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem, 2014, 83: 1-9.

[24] MOSTOFA M G, SERAJ Z I, FUJITA M. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.)seedlings. Protoplasma, 2014, 251(6): 1373-1386.

[25] NAHAR K, HASANUZZA M, ALAM M M. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant, 2015, 59(4): 745-756.

[26] BOURANIS D L, CHORIANOPOULOU S N, NOCITO F F. The crucial role of sulfur in a phytoremediation process lessons from the poaceae species as phytoremediats: a review[G]//KATSIFARAKIS K L, THEODOSSIOU N, CHRISTODOULATOS C. Protection and Restoration of the Environment XI. Thessaloniki:[n. s.], 2012: 634-643.

[27] COBBETT C S, MAY M J, HOWDEN R. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Ara bidopsis thalianais deficient in γ-glutamylcysteine synthetase. Plant J Cell Mol Biol, 1998, 16(1): 73-78.

[28] SCHLAEPPI K, BODENHAUSEN N, BUCHALA A. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J Cell Mol Biol, 2008, 55(5): 774-786.

[29] GEUFLORES F, NIELSEN M T, NAFISI M. Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat Chem Biol, 2009, 5(8): 575-577.

[30] BEDNAREK P. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chem Biol Chem, 2012, 13(13): 1846-1859.

[31] GEUFLORES F, MOLDRUP ME, BHTTCHER C. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell, 2011, 23(6): 2456-2469.

[32] Li Guoqiang, Zhu Yunji, Shen Xueshan. Plant sulfur assimilation pathway and its regulation. Plant Physiology Communications, 2005, 41(6): 699-704.

[33] PIOTROWSKI M, SCHEMENEWITZ A, LOPUKHINA A. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem, 2004, 279 (49): 50717-50725.

[34] MUGFORD S G, LEE B R, KOPRIVOVA A. Control of sulfur partitioning between primary and secondary metabolism. Plant J Cell Mol Biol, 2011, 65(1): 96-105.

[35] KLIEN M, REICHELT M, GERSHENZON J. The three desulfoglucosinolate sulfotransferase proteins in Ara-bidopsis have different substrate specificities and are differentially expressed. FEBS J, 2006, 273(1): 122-136.

[36] MUGFORD S G, YOSHIMOTO N, REICHELT M. Disruption of adenosine-5 ’-phosphosulfate kinase in Ara-bidopsis reduces levels of sulfated secondary metabolites. Plant Cell, 2009, 21(3): 910-927.

[37] BOHRER AS, KOPRIVA S, TAKAHASHI H. Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana. Front Plant Sci, 2015, 5: 751. doi: 10.3389/fpls.2014.00751.

[38] CALDERWOOD A, MORRIS RJ, KOPRIVA S. Predictive sulfur metabolism: a field in flux. Front Plant Sci, 2014, 5: 646. doi: org/10.3389/fpls.2014.00646.

[39] Meng Cifu, Jiang Peikun, Cao Zhihong. Research progress on sulfur transport and assimilation in plants. Journal of Zhejiang Agricultural Sciences, 2011, 23(2): 427-432.

[40] Miao Huiying. Study on the mechanism of glucose and plant hormones cooperatively regulating glucosinolate biosynthesis in cruciferous plants. Hangzhou: Zhejiang University, 2015.

[41] Zhu Fengyu, Chen Yazhou, Yan Xiufeng. Plant glucosinolate metabolism and sulfur nutrition. Plant Physiology Communications, 2007, 43(6): 1189-1194.

[42] HUSEBY S, KOPRIVOVA A, LEE B R. Diurnal and light regulation of sulfur assimilation and glucosinolate biosynthesis in Arabidopsis. J Exp Bot, 2013, 64(4): 1039-1048.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.