Science, Technology, Engineering and Mathematics.
Open Access

THE ROLE OF METABOLOMICS IN FOOD SCIENCE AND ENGINEERING

Download as PDF

Volume 2, Issue 1, Pp 12-18, 2024

DOI: 10.61784/jtls240127

Author(s)

Scott Wernegreen

Affiliation(s)


University of Connecticut, Storr.

Corresponding Author

Scott Wernegreen

ABSTRACT

Metabolomics is an emerging omics field after genomics, transcriptomics and proteomics, and has become an important part of systems biology. Metabolomics has the characteristics of high throughput, high sensitivity and robustness, and can effectively overcome the limitations of traditional methods. It has received widespread attention in many fields in recent years. This article outlines the analysis process of metabolomics and introduces the application and research progress of metabolomics in food safety, food quality control, food processing, food traceability and the impact of food on human health in recent years.

KEYWORDS

Metabolomics; Food science; High-throughput

CITE THIS PAPER

Scott Wernegreen. The role of metabolomics in food science and engineering. Journal of Trends in Life Sciences. 2024, 2(1): 12-18. DOI: 10.61784/jtls240127.

REFERENCES

[1] Yang Q, Zhang A H, Miao J H. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances, 2019, 9(64): 37245-37257.

[2] Cevallos-Cevallos J M, Reyes-De-corcuera J I, Etxeberria E. Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 2009, 20(11-12): 557- 566.

[3] Johanningsmeier S D, Harris G K, Klevorn C M. Metabolomic technologies for improving the quality of food: Practice and promise. Annual Review of Food Science and Technology, 2016, 7: 413-438.

[4] Beale D J, Pinu F R, Kouremenos K A. Review of recent developments in GC-MS approaches to metabolomics- based research. Metabolomics, 2018, 14(11): 1-31.

[5] Cui L, Lu H T, Lee Y H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrometry Reviews, 2018, 37(6): 772-792.

[6] Emwas AH, Roy R, McKay R T. NMR spectroscopy for metabolomics research. Metabolites, 2019, 9(7): 123.

[7] Zhang W, Ram aut ar R. CE -MS for meta bol om ics: Developments and applications in the period 2018-2020. ELECTROPHORESIS, 2021, 42(4): 381-401.

[8] Zhang W, Hankemeier T, Ramautar R. Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics. Current Opinion in Biotechnology, 2017, 43: 1-7.

[9] Zhang X, Quinn K, Cruickshank-Quinn C. The application of ion mobility mass spectrometry to metabolomics. Current Opinion in Chemical Biology, 2018, 42: 60-66.

[10] Segers K, Declerck S, Mangelings D. Analytical techniques for metabolomic studies: A review. Bioanalysis, 2019, 11(24): 2297-2318.

[11] Ulaszew ska M M, Weinert C H, Trimigno A. Nutrimetabolomics: an integrative action for metabolomic analyses in human nutritional studies. Molecular Nutrition & Food Research, 2019, 63(1): 1800384.

[12] Harbourne N, Marete E, Jacquier J C. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria)and willow(Salix alba). LWT- Food Science and Technology, 2009, 42(9): 1468-1473.

[13] Moco S, Bino R J, Vorst O. A liquid chromatography- mass spectrometry-based metabolome database for tomato. Plant Physiology, 2006, 141(4): 1205-1218.

[14] Seeger K. Simple and rapid(extraction)protocol for NMR metabolomics-direct measurement of hydrophilic and hydrophobic metabolites using slice selection. Analytical Chemistry, 2021, 93(3): 1451-1457.

[15] Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 2011, 703(1): 8-18.

[16] Vilkhu K, Mawson R, Simons L. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Science & Emerging Technologies, 2008, 9(2): 161-169.

[17] Herrero M, Cifuentes A, Iba?ez E. Sub- and supercritical ?uid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 2006, 98(1): 136-148.

[18] Mushtaq M Y, Choi Y H, Verpoorte R. Extraction for metabolomics: Access to the metabolome. Phytochemical Analysis, 2014, 25(4): 291-306.

[19] Martineau E, Tea I, Loa?c G. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2133-2142.

[20] Ser Z, Liu X J, Tang N N. Extraction parameters for metabolomics from cultured cells. Analytical Biochemistry, 2015, 475: 22-28.

[21] Halket J M, Waterman D, Przyborowska AM. Chemical derivatization and mass spectral libraries in metabolic pro?ling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 2005, 56(410): 219-243.

[22] OrataF. Derivatization reactions and reagents for gas chromatography analysis. Advanced gas chromatography-progress in agricultural, biomedical and industrial applications, 2012: 83-108.

[23] Gao X F, Pujos-Guillot E, Sébédio J L. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Analytical Chemistry, 2010, 82(15): 6447-6456.

[24] Lu Y W, Yao D, Chen C. 2 -hydrazinoquinoline as a derivatization agent for LC-MS-based metabolomic investigation of diabetic ketoacidosis. Metabolites, 2013, 3(4): 993-1010.

[25] Mochizuki T, Todoroki K, Inoue K. Isotopic variants of light and heavy l-pyroglutamic acid succinimidyl esters as the derivatization reagents for dl-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry. Analytica Chimica Acta, 2014, 811: 51-59.

[26] Zeki ? C, Eylem C C, Re?ber T. Integration of GC- MS and LC-MS for untargeted metabolomics profiling. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113509.

[27] Ortiz-Villanueva E, Benavente F, Pi?a B. Knowledge integration strategies for untargeted metabolomics based on MCR-ALS analysis of CE-MS and LC-MS data. Analytica Chimica Acta, 2017, 978: 10-23.

[28] Mairinger T, Causon T J, Hann S. The potential of ion mobility-mass spectrometry for non-targeted metabolomics. Current Opinion in Chemical Biology, 2018, 42: 9-15.

[29] Sinclair E, Hollywood K A, Yan C Y. Mobilising ion mobility mass spectrometry for metabolomics. The Analyst, 2018, 143(19): 4783-4788.

[30] Márquez C, López M I, Ruisánchez I. FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud. Talanta, 2016, 161: 80-86.

[31] McDougall G, Martinussen I, Stewart D. Towards fruitful metabolomics: High throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. Journal of Chromatography B, 2008, 871(2): 362- 369.

[32] Xue A, Liang W J, de Wen S. Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic- glucosinolates biosynthesis in broccoli sprouts. Journal of Food Composition and Analysis, 2021, 97: 103777.

[33] Antonelli J, Claggett B L, Henglin M. Statistical work?ow for featureselection in human metabolomics data. Metabolites, 2019, 9(7): 143.

[34] Kalivodová A, Hron K, Filzmoser P. PLS-DA for compositional data with application to metabolomics. Journal of Chemometrics, 2015, 29(1): 21-28.

[35] Szymańska E, Saccenti E, Smilde A K. Double- check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 2012, 8(1): 3-16.

[36] Chen T L, Cao Y, Zhang Y N. Random forest in clinical metabolomics for phenotypic discrimination and biomarkerselection. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 298183.

[37] Uarrota V G, Moresco R, Coelho B. Metabolomics combined with chemometric tools(PCA, HCA, PLS-DA and SVM)for screening cassava(Manihot esculenta Crantz) roots during postharvest physiological deterioration. Food Chemistry, 2014, 161: 67-78.

[38] Mazzilli K M, McClain K M, Lipworth L. Identification of 102 correlations between serum metabolites and habitual diet in a metabolomics study of the prostate, lung, colorectal, and ovarian cancer trial. The Journal of Nutrition, 2020, 150(4): 694-703.

[39] Beckmann M, Enot D P, Overy D P. Representation, comparison, and interpretation of metabolome ?ngerprint data for total composition analysis and quality trait investigation in potato cultivars. Journal of Agricultural and Food Chemistry, 2007, 55(9): 3444-3451.

[40] Castro-PuyanaM, Pérez-Míguez R, Montero L. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends in Analytical Chemistry, 2017, 96: 62-78.

[41] Tengstrand E, Rosén J, Hellen?s K E. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach. Analytical and Bioanalytical Chemistry, 2013, 405(4): 1237-1243.

[42] Inoue K, Tanada C, Sakamoto T. Metabolomics approach of infant formula for the evaluation of contamination and degradation using hydrophilic interaction liquid chromatography coupled with mass spectrometry. Food Chemistry, 2015, 181: 318-324.

[43] Dasenaki M E, Thomaidis N S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 2015, 880: 103-121.

[44] Li S B, Tian Y F, Jiang P. Recent advances in the application of metabolomics for food safety control and food quality analyses. Critical Reviews in Food Science and Nutrition, 2021, 61(9): 1448-1469.

[45] Carraturo F, Libralato G, Esposito R. Metabolomic profiling of food matrices: Preliminary identification of potential markers of microbial contamination. Journal of Food Science, 2020, 85(10): 3467-3477.

[46] Jahangir M, Kim H K, Choi Y H. Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 2008, 107(1): 362- 368.

[47] Martínez Bueno M J, Díaz-Galiano F J, Rajski. A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops. Journal of Chromatography A, 2018, 1546: 66-76.

[48] Surowiec I, Fraser P D, Patel R. Metabolomic approach for the detection of mechanically recovered meat in food products. Food Chemistry, 2011, 125(4): 1468-1475.

[49] Ricroch A E, Bergé J B, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic pro?ling techniques. Plant Physiology, 2011, 155(4): 1752-1761.

[50] Cubero -Leon E, Pe?alver R, Maquet A. Review on metabolomics for food authentication. Food Research International, 2014, 60: 95-107.

[51] Klockmann S, Reiner E, Bachmann R. Food fingerprinting: Metabolomic approaches for geographical origin discrimination of hazelnuts (Corylus avellana) by UPLC-QTOF-MS. Journal of Agricultural and Food Chemistry, 2016, 64(48): 9253-9262.

[52] Mazzei P, Piccolo A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chemistry, 2012, 132(3): 1620- 1627.

[53] Lee J E, Lee B J, Chung J O. Metabolomi c unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry, 2015, 174: 452-459.

[54] Cajka T, Riddellova K, Tomaniova M. Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: A powerful tool for beer origin recognition. Metabolomics, 2011, 7(4): 500-508.

[55] Wishart D S. Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology, 2008, 19(9): 482-493.

[56] Gallego AM, Rojas LF, Rodriguez HA. Metabolomic profile of cacao cell suspensions growing in blue light/dark conditions with potential in food biotechnology. Plant Cell, Tissue and Organ Culture: PCTOC, 2019, 139(2): 275- 294.

[57] Gu E J, Kim D W, Jang G J. Mass -based metabolomic analysis of soybean sprouts during germination. Food Chemistry, 2017, 217: 311-319.

[58] Xu S, Xu Y, Gong L. Metabolomic prediction of yield in hybrid rice. The Plant Journal, 2016, 88(2): 219- 227.

[59] McNamara A E, Collins C, Harsh a P S C S. Metabolomic-based approach to identify biomarkers of apple intake. Molecular Nutrition & Food Research, 2020, 64 (11): 1901158.

[60] O ’Sullivan A, Gibney M J, Brennan L. Dietary intake patterns are re?ected in metabolomic pro?les: Potential role in dietary assessment studies. The American Journal of Clinical Nutrition, 2011, 93(2): 314-321.

[61] Langenau J, Oluwagbemigun K, Brachem C. Blood metabolomic profiling confirms and identifies biomarkers of food intake. Metabolites, 2020, 10(11): 468.

[62] Catalán ú, Rodríguez M á, Ras M R. Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach. Molecular BioSystems, 2013, 9(6): 1411-1422.

[63] O’Gorman A, Brennan L. Metabolomic applications in nutritional research: A perspective. Journal of the Science of Food and Agriculture, 2015, 95(13): 2567-2570.

[64] Pallister T, Jackson M A, Martin T C. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Scienti?c Reports, 2017, 7: 13670.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.