Science, Technology, Engineering and Mathematics.
Open Access

RESEARCH PROGRESS OF SUPPORTED PHOTOCATALYTIC MEMBRANES

Download as PDF

Volume 2, Issue 1, Pp 9-14, 2024

DOI: 10.61784/wjmp240164

Author(s)

Unal Muhammad

Affiliation(s)

Universitas Sarjanawiyata Tamansiswa, Yogyakarta.

Corresponding Author

Unal Muhammad

ABSTRACT

Photocatalytic technology and membrane separation technology are two new water treatment technologies. The photocatalytic membrane formed after coupling the two can not only fix the catalyst and alleviate membrane pollution, but also produce a synergistic effect and reduce pollutants in the water. degradation efficiency. The types of photocatalysts and supported membranes are reviewed, as well as the research status of photocatalytic supported membranes.

KEYWORDS

Photocatalysis; Membrane separation; Supported photocatalytic membrane

CITE THIS PAPER

Unal Muhammad. Research progress of supported photocatalytic membranes. World Journal of Mathematics and Physics. 2024, 2(1): 9-14. DOI: 10.61784/wjmp240164.

REFERENCES

[1] Sun Yi, Yu Liliang, Huang Haobin. Research and development trends and practical progress of advanced oxidation technology to treat refractory organic wastewater. Journal of Chemical Engineering, 2017, 68(5): 1743-1756.

[2] KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Applied Catalysis B: Environmental, 2017(11): 810-824.

[3] JANSSENS R , MANDAL M K , DUBEY K K. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: towards cytostat-ic drug elimination. Science of the Total Environment, 2017(3): 612-626.

[4] VILLABONA-LEAL E G , L6PEZ-NEIRA J P, PEDRAZA-AVELLA J A. Screening of factors influencing the pho-tocatalytic activity of TiO2: Ln (Ln = La, Ce, Pr, Nd, Sm , Eu and Gd) in the degradation of dyes. Computational Mate-rials Science, 2015(5): 48-53.

[5] BERBERIDOU C , KITSIOU V, LAMBROPOULOU D A. Evaluation of an alternative method for wastewater treat-ment containing pesticides using solar photocatalytic oxidation and constructed wetlands. Journal of Environment Man-age, 2017, 195(2): 133-139.

[6] MIRZAEI A , CHEN Z , HAGHIGHAT F. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a re-view. Sustainable Cities and Society , 2016(8): 407-418.

[7] ZHANG Y, LIN C , LIN Q. CuI-BiOI/Cu film for en-hanced photo-induced charge separation and visible-light anti-bacterial activity. Applied Catalysis B: Environmental, 2018(5): 238-245.

[8] WANG H, YUAN X, WU Y. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Applied Ca-talysis B: Environmental, 2015(3): 445-454.

[9] PHAN D D, BABICK F, TRINH T H T. Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes. Chemical Engineering Sci-ence, 2018(6): 332-342.

[10] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37.

[11] MOLINARI R , LAVORATO C , ARGURIO P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. a review. Cataly-sis Today , 2016(6): 144-164.

[12] SHEHZAD N , TAHIR M , JOHARI K. A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. Journal of CO2 Utilization, 2018, 26(4): 98-122.

[13] GUO B , SNOW S D, STARR B J. Photocatalytic inactivation of human adenovirus 40: effect of dissolved organic matter and prefiltration. Separation and Purification Tech-nology , 2017(11): 193-201.

[14] JIANG D, XUE J, WU L. Photocatalytic performance enhancement of CuO/Cu2 O heterostructures for photodegradation of organic dyes: effects of CuO morphology. Ap-plied Catalysis B: Environmental, 2017(4): 199-204.

[15] HONG Y, JIANG Y, LI C. In-situ synthesis of directsolid-state Z-scheme V2 O5/g-C3 N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Applied Catalysis B: Environmental, 2015 (6): 663-673.

[16] LU H J, HAO Q, CHEN T. A high-performance Bi2 O3/Bi2 SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2 O3. Applied Catalysis B: Environ-mental, 2018(5): 59-67.

[17] WANG X C , MAEDA K, THOMAS A. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2008, 8: 76.

[18] CHEN W Y , NIU X J, WANG J. A photocatalyst of graphene oxide (GO)/Ag3 PO4 with excellent photocatalytic activity over decabromodiphenyl ether (BDE-209) under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry , 2017(12): 304-311.

[19] VAMVASAKIS I, PAPADAS I T , TZANOUDAKIS T. Visible-light photocatalytic H2 production activity of β-Ni (OH) 2-modified CdS mesoporous nanoheterojunction networks. ACS Catalysis, 2018, 8/9: 8726-8738.

[20] ZHU C , LIU C , ZHOU Y. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2017(5): 114-121.

[21] BASHIRI R A , MONTAZER M , MAHMOUDI R M. Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and pho-tocatalytic applications. Journal of Cleaner Production, 2018(8): 425-436.

[22] ZHANG B , ZOU S , CAI R. Highly-efficient photocatalytic disinfection of Escherichia coli under visible light using carbon supported vanadium tetrasulfide nanocomposites. Applied Catalysis B: Environmental, 2017(10): 383-393.

[23] CHEN H, JIANG G H, YU W J. Preparation of electrospun ZnS-loaded hybrid carbon nanofiberic membranes for photocata-lytic applications. Powder Technol, 2016(5): 1-8.

[24] LIMA A E B, COSTA M J S, SANTOS R S. Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim Acta, 2017(10): 139-145.

[25] LEI M , WANG N , ZHU L H. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: a mechanism based on the switching of pho-tocatalytic reduction potential being controlled by the valence state of copper. Applied Catalysis B: Environmental, 2015 (9): 414-423.

[26] HAIDER Z , KANG Y S. Facile preparation of hierarchical TiO2 nano structures: growth mechanism and enhanced photo-catalytic H2 production from water splitting using methanol as a sacrificial reagent. ACS Applied Materials and Interfaces, 2014, 6(13): 10342-10352.

[27] HE Z Q, CAI Q L , FANG H Y. Photocatalytic activity of TiO2 containing anatase nanoparticles andrutilenanoflower structure consisting of nanorods. Journal of Environmental Sciences, 2013, 25(12): 2460-2468.

[28] WANG X, WANG X J, ZHAO J F. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites. Applied Catalysis B: Environmental, 2017(1): 479-489.

[29] ONG W J, TAN L L , NG Y H. Graphitic carbon nitride (g-C3 N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achie-ving sustainability?. Chemical Reviews, 2016 (12): 7159-7329.

[30] MA S , ZHAN S , JIA Y. Enhanced disinfection applica tion of Ag-modified g-C3 N4 composite under visible light. Applied Catalysis B: Environmental, 2015(12): 77-87.

[31] DE SILVA S W , DU A, SENADEERA W. Strained graphitic carbon nitride for hydrogenpurification. Journal of Membrane Science, 2017(1): 201-205.

[32] LIU S, CHEN F, LI S. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3 N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Applied Catalysis B: Environmental, 2017(4): 1-10.

[33] Zhang Jinshui, Wang Bo, Wang Xinchen. Carbon nitride polymer semiconductor photocatalysis. Progress in Chemistry, 2014, 26(1): 19-29.

[34] CUI Y. Insitu synthesis of C3 N4/CdS composites with enhanced photocatalytic properties. Chinese Journal of Catalysis, 2015, 36(3): 372-379.

[35] ZHAO H, CHEN S , QUAN X. Integration of microfil-tration and visible-light-driven photocatalysis on g-C3 N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 2016(4): 134-140.

[36] JIANG J J, WANG H T , CHEN X D. Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. Jour-nal of Colloid Interface Science, 2017(1): 130-138.

[37] CANTARELLA M , DI MAURO A , GULINO A. Selective photodegradation of paracetamol by molecularly imprin-ted ZnO nanonuts. Applied Catalysis B: Environmental, 2018(7): 509-517.

[38] HUANG H W , HE Y, DU X. A general and facile approach to heterostructured core/shell BiVO4/BiOI p-njunc-tion: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustainable Chemistry & Engineering , 2015, 3(12): 3262-3273.

[39] YIN Y Y, LIU Q, JIANG D. Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrica-tion of BiOBr nanohybrids with enhanced visible-light photo-activity and photostability. Carbon, 2015 (10): 1157-1165.

[40] HE R A, CAO S , ZHOU P. Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Cataly-sis, 2014, 35(7): 989-1007.

[41] LI B , CHEN X W , ZHANG T Y. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocat-alytic activity. Applied Surface Science, 2017(12): 1047-1056.

[42] BRUNETTI A , ZITO P F, GIORNO L. Membrane reactors for low temperature applications: an overview. Chem-ical Engineering and Processing —Process Intensification, 2017(5): 282-307.

[43] BRUNET ER, RAFIEIAN D, POSTMA RS. Egg-shell membrane reactors for nitrite hydrogenation: manipulating ki-netics and selectivity. Applied Catalysis B: Environmental Mental, 2017(10): 276-282.

[44] GHAFFAR A, ZHANG L, ZHU XY. Porous PVdF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water. Environ Science Technol, 2018, 52(7): 4265-4274.

[45] Zhang Hongzhong, Zhang Yu, Wang Minghua. Application of titanium dioxide photocatalytic membrane separation coupling technology in water treatment. Inorganic Salt Industry, 2017, 49(7): 50-54.

[46] DU X, QU F S , LIANG H. Control of submerged hollow fiber membrane fouling caused by fine particles in photo-catalytic membrane reactors using bubbly flow: shear stress and particle forces analysis. Separation and Purification Technology , 2016(8): 130-139.

[47] TAN Y Z , WANG H, HAN L. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018(8): 254-265.

[48] JIANG L , ZHANG X L , CHOO K H. Submerged microfiltration-catalysis hybrid reactor treatment: photocatalytic inactiva-tion of bacteria in secondary wastewater effluent. Separa-tion and Purification Technology , 2017(1): 87-92.

[49] ZHANG Y, WAN Y, PAN G. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling. Applied Surface Science, 2018(5): 139-148.

[50] WU X N, ZHAO B , WANG L. Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption. Separation and Purifica-tion Technology , 2017(7): 108-116.

[51] LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehen-sive review. Progress in Ploymer Science, 2018(6): 1-33.

[52] ALEM A , SARPOOLAKY H, KESHMIRI M. Titania ultrafil tration membrane: preparation, characterization and photocata-lytic activity. Journal of the European Ceramic Society , 2009, 29(4): 629-635.

[53] ZHANG Q, WANG H, FAN X. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treat-ment. Surface and Coatings Technology, 2016(4): 45-52.

[54] ALIAS S S , HARUN Z , LATIF I S A. Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes. Journal of Materials Science, 2018, 53(16): 11534-11552.

[55] LIN Y Q, CAI Y Y, DRIOLI E. Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultra-filtration membranes via Ag doping method. Separation and Purification Technology , 2015(2): 29-38.

[56] QIAN D L , CHEN D Y , LI N J. TiO2/sulfonated graphene oxide/Ag nanoparticle membrane: in situ separation and photodegradation of oil/water emulsions. Journal of Membrane Science, 2017(12): 16-25.

[57] RAO G Y, ZHANG Q Y, ZHAO H L. Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal, 2016(5): 633-640.

[58] SHEN X F, ZHANG T Y , XU P F. Growth of C3 N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flow-ing wastewater. Applied Catalysis B: Environmental, 2017(7): 425-431.

[59] MANTILAKA M M M G P G, DE SILVA R T, RATNAYAKE S P. Photocatalytic activity of electrospun MgO nanofibres: syn-thesis, characterization and applications. Materials Research Bulletin, 2017(10): 204-210.

[60] SU J F, YANG G H, CHENG C L. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. Journal of Colloid Interface Science, 2017(7): 386-396.

[61] ZANGENEH H, ZINATIZADEH A A, ZINADINI S. A novel photocatalytic self-cleaning PES nanofiltration mem-brane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. Reactive and Functional Polymers, 2018(4): 139-152.

[62] YU S, WANG Y, SUN F. Novel mpg-C3 N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethox-azole photodegradation. Chemical Engineering Journal, 2017(12): 183-192.

[63] PAREDES L , MURGOLO S , DZINUN H. Application of immobilized TiO2 on PVDF dual layer hollow fibre mem-brane to improve the photocatalytic removal of pharmaceuti-cals in different water matrices. Applied Catalysis B:Environmental, 2018(8): 9-18.

[64] LI F, YU Z , SHI H. A mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites mem-branes for catalytic decomposition and oil-in-water emulsion separation. Chemical Engineering Journal, 2017 (3): 33-45.

[65] MOHAMED M A, SALLEH W N W, JAAFAR J. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chemical Engineering Journal, 2015(8): 202-215.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.