Science, Technology, Engineering and Mathematics.
Open Access

APPLICATION PROGRESS OF MATERIALS GENOME TECHNOLOGY IN THE FIELD OF NEW ENERGY MATERIALS

Download as PDF

Volume 2, Issue 1, Pp 11-20, 2024

DOI: 10.61784/wjms240168

Author(s)

Kevin Ortner

Affiliation(s)

University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada.

Corresponding Author

Kevin Ortner

ABSTRACT

Materials genome integrates high-throughput computing, high-throughput preparation, high-throughput detection and database systems of materials. It is a "paradigm revolution" in materials research and development. With its profound scientific connotation and significant application potential, it will accelerate New materials discovery and applications. This article focuses on the use of materials genome in the research and development of new energy materials to shorten the "discovery-development-production-application" cycle of new energy materials. It introduces the internationally representative Materials Project and OQMD two material genome platforms, as well as some important the application of materials genome computing technologies, such as material conformation characterization, high-throughput computing and screening, machine learning, neural network technology, optimization algorithms and new high-throughput preparation and characterization technologies, in the research and development of new energy materials, and the next step the development of materials genome puts forward prospects, such as developing high-precision high-throughput computing, using artificial intelligence to develop high-throughput experimental systems and platforms, generating material big data, and making full use of material big data through intelligent computing to create computing and experiments. The integrated materials genome big data artificial intelligence system accelerates the discovery and application of new energy materials.

KEYWORDS

Materials genome; New energy materials; High-throughput computing; High-throughput experiment

CITE THIS PAPER

Kevin Ortner. Application progress of materials genome technology in the field of new energy materials. World Journal of Materials Science. 2024, 2(1): 11-20. DOI: 10.61784/wjms240168.

REFERENCES

[1] National Science and Technology Council. Materials genome initiative strategic plan. USA, 2014.

[2] RACCUGLIA P, ELBERT K C, ADLER P D F. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533 (7601): 73-76.

[3] Wang Hong, Xiang Yong, Xiang Xiaodong. Materials genome -a new model for materials research and development. Science and Technology Herald, 2015, 33(10): 13-19.

[4] DREYSSE H, CEDER G, FONTAINE D D. Determination of effective pair interactions and segregation behavior at alloy surfaces. Vacuum,1990, 41(1): 446-448.

[5] CEDER G, HUANG P, MENON S. Ab initio calculation of the Cu-Pd one-dimensional long period superstructure phase diagram. Acta Metallurgica Et Materialia,1990, 38(11): 2299-2308.

[6] FONTAINE DD, CEDER G, ASTA M. Thermodynamics of oxygen ordering in YBa2Cu3Oz. Journal of the Less-Common Metals, 1990, 164(11): 108-123.

[7] CEDER G, ASTA M, CARTER W C. Phase diagram and low-temperature behavior of oxygen ordering in YBa2Cu3Oz using ab initio interactions. Physical Review B Condensed Matter, 1990, 41(13). https://doi.org/10.1103/PhysRevB.41.8698.

[8] CEDER G. A computational study of oxygen ordering in YBa2Cu3Oz and its relation to superconductivity. Molecular Simulation, 1994,12(2): 141-153.

[9] FONTAINE D D, CEDER G, ASTA M. Low-temperature long-range oxygen order in YBa2Cu3Oz. Nature, 1990, 343(6258): 544-546.

[10] VEN A V D, MARIANETTI C, MORGAN D. Phase transformations and volume changes in spinel LixMn2O4. Solid State Ionics, 2000, 135(1): 21-32.

[11] VEN A V D, CEDER G. Lithium diffusion mechanisms in layered intercalation compounds. Journal of Power Sources, 2001(97/98): 529-531.

[12] DOMPABLO M E, MARIANETTI C, VEN A V D. Jahn-Teller mediated ordering in layered LixMO2 compounds. Physical Review B Condensed Matter, 2001, 63(63). https://doi.org/10.1103/PhysRevB.63.144107.

[13] VAN D V A, CEDER G, ASTAM. First-principles theory of ionic diffusion with nondilute carriers. Physical Review B, 2001, 64(18):607-611.

[14] DOMPABLO M E, VEN A V D, CEDER G. First-principles calculations of lithium ordering and phase stability on LixNiO2.Physical Review B, 2002, 66(6): 340-351.

[15] CURTAROLO S, MORGAN D, PERSSON K. Predicting crystal structures with data mining of quantum calculations. Physical Review Letters, 2003, 91(13): doi: 10.1103/PhysRevLett.91.135503.

[16] MORGAN D. Data mining approach to ab-initio prediction of crystal structure. MRS Proceedings, 2003, 804: 1-6.

[17] MORGAN D, CEDER G, CURTAROLO S. High-throughput and data mining with abinitio methods. Measurement Science & Technology, 2004, 16(16): 296-301.

[18] WU Y, LAZIC P, HAUTIER G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy & Environmental Science, 2012, 6(1): 157-168.

[19] MUELLER T, HAUTIER G, JAIN A. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chemistry of Materials, 2011, 23(17): 3854-3862.

[20] CEDER G, MORGAN D, FISCHER C. Data-mining-driven quantum mechanics for the prediction of structure. MRS Bulletin, 2006, 31(12): 981-985.

[21] JAIN A, HAUTIER G, MOORE C J. A high-throughput infrastructure for density functional theory calculations. Computational Materials Science, 2011, 50(8): 2295-2310.

[22] HAUTIER G, JAIN A, ONG S P. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations. Chemistry of Materials, 2011, 23(15): 3495-3508.

[23] HAUTIER G, FISCHER C C, JAIN A. Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chemistry of Materials, 2010, 22(12): 3762-3767.

[24] HAUTIER G, FISCHER C, EHRLACHER V. Data mined ionic substitutions for the discovery of new compounds. Inorganic Chemistry, 2011, 50(2): doi: 10.1021/ic102031h.

[25] YANG L, CEDER G. Data-mined similarity function between material compositions. Physical Review B, 2013, 88(22): 330-339.

[26] MEREDIG B, WOLVERTON C. Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends. Chemistry of Materials, 2014, 26(6): 1985-1991.

[27] MEREDIG B, AGRAWAL A, KIRKLIN S. Combinatorial screening for new materials in unconstrained composition space with machine learning. Physical Review B, 2014, 89(9): 82-84.

[28] Lin Hai, Linyuan, Pan Feng. "Research on all-solid-state lithium-ion batteries based on materials genome" was approved by the national project. Energy Storage Science and Technology, 2016, 5(6): 922-925.

[29] WANG X, XIAO R, LI H. Oxysulfide LiAlSO: A lithium superionic conductor from first principles. Physical Review Letters, 2017, 118(19): doi: https://doi.org/10.1103/PhysRevLett.118.195901.

[30] XIANG X, WANG H, XIANG Y. Applications of combinatorial material chip technology in research and development of new materials. Science & Technology Review, 2015, 33(10): 64-78.

[31] WANG Y, LU J, ZHU L. Crystal structure prediction via particle swarm optimization. Physics, 2010, 82(9): 7174-7182.

[32] WANG Y, LU J, ZHU L. CALYPSO: A method for crystal structure prediction. Computer Physics Communications, 2012, 183(10): 2063-2070.

[33] HINUMA Y, PIZZI G, KUMAGAI Y. Band structure diagram paths based on crystallography. Computational Materials Science, 2017, 128: 140-184.

[34] SHI Y, WANG Y, WONG J I. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): Towards high performance anode materials for lithium ion batteries. Scientific Reports, 2013, 3: doi: 10.1038/srep02169.

[35] HUANG X, ZENG Z, BAO S. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444-1452.

[36] FAN S, LIM L Y, TAY Y Y. Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1(46): 14577-14585.

[37] YAN W, CHEN Y, YANG Y. Development of high performance catalysts for CO oxidation using data-based modeling. Catalysis Today, 2011, 174 (1): 127-134.

[38] ZENG Y, BAI K. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII. Journal of Alloys and Compounds, 2015, 624 : 201-209.

[39] INAGAKI T, ISHIDA T. Computational design of non-natural sugar alcohols to increase thermal storage density: Beyond existing organic phase change materials. Journal of the American Chemical Society, 2016, 138(36): 11810-11819.

[40] AYKOL M, KIM S, HEGDE V I. High-throughput computational design of cathode coatings for Li-ion batteries. Nature Communications, 2016, 7: 13779-13790.

[41] WEININGER D SMILES. A chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information & Computer Sciences, 1988, 28 (1): 31-36.

[42] SCHUTT K T, GLAWE H, BROCKHERDE F. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Physical Review B, 2013, 89(20): 163-168.

[43] FABER F, LINDMAA A, VON LILIENFELD O A. Crystal structure representations for machine learning models of formation energies. International Journal of Quantum Chemistry, 2015, 115(16): 1094-1101.

[44] CEDER G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bulletin, 2010, 35(9): 693-701.

[45] CASTELLI I E, OLSEN T, DATTA S. Computational screening of perovskite metal oxides for optimal solar light capture. Energy & Environmental Science, 2012, 5(2): 5814-5819.

[46] MADSEN G K H. Automated search for new thermoelectric materials: The case of LiZnSb. Journal of the American Chemical Society, 2006, 128(37): 12140-12146.

[47] SERRA J M, BAUMES L A, MOLINER M. Zeolite synthesis modelling with support vector machines: A combinatorial approach. Combinatorial Chemistry & High Throughput Screening, 2007, 10(1):13-24.

[48] HASSAN A M, ALRASHDAN A, HAYAJNEH M T. Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network. Journal of Materials Processing Technology, 2009, 209(2): 894-899.

[49] AKBARPOUR H, MOHAJERI M, MORADI M. Investigation on the synthesis conditions at the interpore distance of nanoporous anodic aluminum oxide: A comparison of experimental study, artificial neural network, and multiple linear regression. Computational Materials Science, 2013, 79: 75-81.

[50] CHO K H, NO K T, SCHERAGA H A. A polarizable force field for water using an artificial neural network. Journal of Molecular Structure, 2002, 641(1): 77-91.

[51] CHEN Z, JIANG X, LI J. PDECO: Parallel differential evolution for clusters optimization. Journal of Computational Chemistry, 2013, 34(12): 1046-1059.

[52] WU S Q, JI M, WANG C Z. An adaptive genetic algorithm for crystal structure prediction. Journal of Physics Condensed Matter An Institute of Physics Journal, 2014, 26(3): doi: 10.1088/0953-8984/26/3/035402.

[53] WEI Y, ZHENG J, CUI S. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. Journal of the American Chemical Society, 2015, 137(26): 8364-8367.

[54] ZHENG J, LIU T, HU Z. Tuning of thermal stability in layered Li(NixMnyCoz)O2. Journal of the American Chemical Society, 2016, 138(40): 13326.

[55] LIANG J, LIN Q, LI H. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells. Applied Physics Letters, 2015, 107(1): 699-7539.

[56] LIN Q, SU Y, ZHANG M J. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells. Chemical Communications, 2016, 52(71): 10708-10711.

[57] ZHANG M J, LIN Q, YANG X. Novel p-type conductive semiconductor nanocrystalline film as the back electrode for high-performance thin film solar cells. Nano Letters, 2016, 16(2): 1218-1223.

[58] PEI Y, PEI R, LIANG X. CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process. Scientific Reports, 2016, 6: doi: 10.1038/srep21551.

[59] ZHENG J, ZHANG K, FANG Y. How to optimize the interface between photosensitizers and TiO2 nanocrystals with molecular engineering to enhance performances of dye-sensitized solar cells?. ACS Applied Materials & Interfaces, 2015, 7(45): 66-76.

[60] HU J, LI W, DUAN Y. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries. Advanced Energy Materials, 2017, 7(5): doi: 10.1002/aenm.201601894.

[61] HU J, JIANG Y, CUI S. 3D-Printed Cathodes of LiMn1-xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Advanced Energy Materials, 2016, 6(18): 1600856.

[62] QIAO R X, ZHANG M J, LIU Y D. A novel real-time state-of-health and state-of-charge co-estimation method for LiFePO4 battery. Chinese Physics Letters, 2016, 33(7): 182-185.

[63] MEI Z, ZHANG B, ZHENG J. Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy, 2016, 26: 405-416.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.