Science, Technology, Engineering and Mathematics.
Open Access

RECENT ADVANCEMENTS IN QUANTITATIVE MODELING OF COMPOSITE METAL LITHIUM ANODES

Download as PDF

Volume 2, Issue 2, Pp 21-34, 2024

DOI: 10.61784/wjmpv2n256

Author(s)

Elmira Tamayol

Affiliation(s)

Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68508, USA.

Corresponding Author

Elmira Tamayol

ABSTRACT

Lithium metal has extremely high specific capacity and extremely low redox electrode potential, and is one of the core energy Materials in the field of secondary batteries. However, metallic lithium anodes face challenges such as volume expansion and uneven lithium deposition. Introducing a three-dimensional skeleton into the metallic lithium anode to construct a composite lithium anode is an effective method to alleviate volume expansion and regulate lithium deposition. The composite metal lithium anode has complex composition and structure, and the factors affecting the electrochemical reaction are strongly coupled. With the advancement of physical and chemical models and the large-scale improvement of computing levels, numerical model analysis can effectively study the physical and chemical mechanisms in composite lithium anodes. This article first sumMarizes the core process mechanisms that occur in composite metal lithium anodes and reviews the development of physical and chemical models. Then the quantitative model of the electrochemical Mass transfer process such as the surface electric field and ion field of the composite lithium anode was introduced, and the progress of the analysis and control strategies of the dynamic evolution mechanism of lithium deposition morphology based on the phase field model or finite element model was reviewed. The structural stability of the composite lithium anode during cycling was analyzed from the perspective of the electrochemical field. These quantitative model works reveal the electrochemical principles of lithium anodes and promote the efficient screening and optimized design of composite lithium anodes.

KEYWORDS

Lithium metal battery; Composite metal lithium anode; Theoretical simulation; Mass transfer process; Morphology evolution

CITE THIS PAPER

Elmira Tamayol. Recent advancements in quantitative modeling of composite metal lithium anodes. World Journal of Mathematics and Physics. 2024, 2(2): 21-34. DOI: 10.61784/wjmpv2n256.

REFERENCES

[1] Zhang XQ, Zhao CZ, Huang J Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering, 2018, 4(6): 831-847.

[2] Tian Y, Lin C, Chen X. Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries. Energy Storage Materials, 2023, 56: 412-423.

[3]  Liu H, Cheng X B, Chong Y. Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57: 56-71.

[4]  Zhang R, Chen X, Shen X. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule, 2018, 2(4): 764-777.

[5]  Liu D H, Bai Z Y, Li M. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chemical Society Reviews, 2020, 49(15): 5407- 5445.

[6]  Liu B, Zhang J G, Xu W. Advancing lithium metal batteries. Joule, 2018, 2(5): 833-845.

[7]  Stark J K, Ding Y, Kohl P A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium. Journal of the Electrochemical Society, 2013, 160(9): D337-D342.

[8]  Xu W, Wang J L, Ding F. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513-537.

[9]  Zhang H M, Liao X B, Guan Y P. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nature Communications, 2018, 9: 3729.

[10] Han Y Y, Liu B, Xiao Z. Interface issues of lithium metal anode forhigh-energy batteries: Challenges, strategies, and perspectives. InfoMat, 2021, 3(2): 155-174.

[11] Gao M D, Li H, Xu L. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. Journal of Energy Chemistry, 2021, 59: 666-687.

[12] Zhu G L, Zhao C Z, Yuan H. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells. Acta Physico Chimica Sinica, 2020: 2005003.

[13] Li M, Wang C S, Chen Z W. New concepts in electrolytes. Chemical Reviews, 2020, 120(14): 6783-6819.

[14] Zhang X Q, Chen X, Cheng X B. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie (International Ed in English), 2018, 57(19): 5301-5305.

[15] Zhang W D, Wu Q A, Huang J X. Colossal granular lithium deposits enabled by the grain-coarsening effect for high- efficiency lithium metal full batteries. Advanced Materials, 2020, 32(24): 2001740.

[16] Zhao Q, Stalin S, Zhao C Z. Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5(3): 229-252.

[17] Fan X L, Chen L, Borodin O. Non-flamMable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715-722.

[18] Shi P, Liu Z Y, Zhang X Q. Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy Chemistry, 2022, 64: 172-178.

[19] Xu R, Cheng X B, Yan C. Artificial interphases for highly stable lithium metal anode. Matter, 2019, 1(2): 317-344.

[20] Xiao Y, Xu R, Yan C. Waterproof lithium metal anode enabled by cross-linking encapsulation. Science Bulletin, 2020, 65(11): 909-916.

[21] Liu S F, Ji X A, Yue J E. High interfacial-energy interphase promoting safe lithium metal batteries. Journal of the American Chemical Society, 2020, 142(5): 2438-2447.

[22] Li N W, Shi Y, Yin Y X. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509.

[23] LI T, Shi P, Zhang R. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Research, 2019, 12(9): 2224-2229.

[24] He X, Yang Y, Cristian M S. Uniform lithium electrodeposition for stable lithium-metal batteries. Nano Energy, 2020, 67: 104172.

[25] Meng N, Zhu X G, Lian F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022, 60: 14-36.

[26] Wang C W, Gong Y H, Liu B Y. ConforMal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Letters, 2017, 17(1): 565-571.

[27] Zhang Y, Luo W, Wang C W. High-capacity, low- tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3584-3589.

[28] Wang H S, Lin D C, Liu Y Y. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Science Advances, 2017, 3(9): e1701301.

[29] Liu Y Y, Lin D C, Liang Z. Lithium-coated polymeric Matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 2016, 7: 10992.

[30] Lin D C, Liu Y Y, Liang Z. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 2016, 11(7): 626-632.

[31] Liang Z, Lin D C, Zhao J. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862- 2867.

[32] Shen X, Cheng X B, Shi P. Lithium-Matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. Journal of Energy Chemistry, 2019, 37: 29-34.

[33] Shi P, Li T, Zhang R. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Advanced Materials, 2019, 31(8): e1807131.

[34] Li Q, Zhu S P, Lu Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Advanced Functional Materials, 2017, 27(18): 1606422.

[35] YE H A, Zheng Z J, Yao H R. Guiding uniform Li plating/ stripping through lithium-aluminum alloYing medium for long-life Li metal batteries. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099.

[36] Yang C P, Xie H A, Ping W W. An electron/ion dual- conductive alloy framework for high-rate and high-capacity solid- state lithium-metal batteries. Advanced Materials, 2019, 31(3): 1804815.

[37] Liang X, Pang Q, Kochetkov I R. A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2: 17119.

[38] Chang J, Shang J, Sun Y M. Flexible and stable high- energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9: 4480.

[39] Liu K, Kong B, Liu W. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule, 2018, 2(9): 1857-1865.

[40] Li T, Liu H, Shi P. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Metals, 2018, 37(6): 449-458.

[41] Yang C P, Yin Y X, Zhang S F. Accommodating lithium into 3D current collectors with a submicron skeleton towards long- life lithium metal anodes. Nature Communications, 2015, 6: 8058.

[42] Yue X Y, Wang W W, Wang Q C. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials, 2018, 14: 335-344.

[43] Wan M T, Kang S J, Wang L. Mechanical rolling forMation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11: 829.

[44] Pan L H, Luo Z F, Zhang Y T. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS Applied Materials & Interfaces, 2019, 11(47): 44383-44389.

[45] Liang Z, Zheng G, Liu C. Polymer nanofiber-guided uniform lithium deposition for battery electrodes . Nano Letters, 2015, 15(5): 2910-2916.

[46] Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367.

[47] Shen Xin, Zhang Rui, Cheng Xinbing. Research progress on in-situ observation and growth mechanism of lithium dendrites. Energy Storage Science and Technology, 2017, 6(3): 418-432.

[48] Cheng XB, Hou TZ, Zhang R. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced Materials, 2016, 28(15): 2888-2895.

[49] Liu J, Yuan H, Cheng X B. A review of naturally derived nanostructured Materials for safe lithium metal batteries. Materials Today Nano, 2019, 8: 100049.

[50] Liu JA, Yuan H, Liu H. Unlocking the failure mechanism of solid state lithium metal batteries. Advanced Energy Materials, 2022, 12(4): 2100748.

[51] Liu Q, Yu JH, Guo W Q. Boosting the Li|LAGP interfacial compatibility with trace nonflamMable all-fluorinated electrolyte: The role of solid electrolyte interphase. EcoMat, 2023, 5(4): 12322.

[52] Liu H, Cheng X B, Yan C. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72-81.

[53] Zhang J, QIAO J S, Sun K N. Balancing particle properties for practical lithium-ion batteries. Particuology, 2022, 61: 18-29.

[54] Zhang L S, Chen S Y, Wang W T. Enabling dendrite-free charging for lithium batteries based on transport-reaction competition mechanism in CHAIN framework. Journal of Energy Chemistry, 2022, 75: 408-421.

[55] Ma Q T, Sun X W, Liu P. Bio-inspired stable lithium-metal anodes by co-depositing lithium with a 2D vermiculite shuttle. Angewandte Chemie (International Ed in English), 2019, 58(19): 6200-6206.

[56] Wang S H, Yin Y X, Zuo T T. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials, 2017, 29(40): 1703729.

[57] Zhang L H, Yin X G, Shen S B. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh- areal-capacity Li deposition. Nano Letters, 2020, 20(8): 5662- 5669.

[58] Zhang R, Shen X, Cheng X B. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?. Energy Storage Materials, 2019, 23: 556-565.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.