Science, Technology, Engineering and Mathematics.
Open Access

THEORY AND APPLICATIONS OF VIDEO ABNORMAL BEHAVIOR DETECTION

Download as PDF

Volume 6, Issue 2, Pp 29-45, 2024

DOI: 10.61784/jcsee3006

Author(s)

PeiChen Wu1, DengBin Xu1, LiNing Yuan2*

Affiliation(s)

1 School of Information Network Security, People's Public Security University of China, Beijing 100038, China.

2 School of Public Security Big Data Modern Industry, Guangxi Police College, Nanning 530028, Guangxi, China.

Corresponding Author

LiNing Yuan

ABSTRACT

Video abnormal behavior detection is a research hotspot in the field of computer vision. By extracting the spatiotemporal characteristics of video content, we can determine whether there are abnormal events and their types in the video, and identify the location and time of the abnormal events. Based on supervised/unsupervised learning, this paper systematically combs and summarizes the existing video abnormal behavior detection methods. Starting from the current mainstream modeling idea, the supervision method is described in detail, and the completely unsupervised method is introduced to train the model. The network architectures of different models are compared, and the characteristics of various anomaly detection models in terms of test data sets, usage scenarios, advantages and limitations are summarized. Then, through common evaluation criteria such as frame level standard and pixel level standard, the model is compared and the performance is evaluated. At the same time, the performance of different methods is compared within the class, and the results are analyzed and summarized in depth. Finally, the future development direction is outlined briefly, and the development trend of video anomaly detection from virtual composite dataset, multi-modal large-scale model to lightweight model is discussed.

KEYWORDS

Abnormal behavior detection; Deep learning; Fully unsupervised; Multimodal features

CITE THIS PAPER

PeiChen Wu, DengBin Xu, LiNing Yuan. Theory and applications of video abnormal behavior detection. Journal of Computer Science and Electrical Engineering. 2024, 6(2): 29-45. DOI: 10.61784/jcsee3006.

REFERENCES

[1] Yao Huiling, Xing HU. A survey of video violence detection. Cyber-Physical Systems. 2023, 9(1): 1-24.

[2] S.Roshan, G. Srivathsan, K. Deepak, S. chandrakala, et al. Violence detection in automated video surveillance: Recent trends and comparative studies. The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems. 2020: 157-171.

[3] Bharathkumar Ramachandra, Michael Jones, Ranga Raju Vatsavai. A survey of single-scene video anomaly detection. IEEE on pattern analysis and machine intelligence, 2020, 44(5): 2293-2312.

[4] Kamal Kant Verma, Brij Mohan Singh, Amit Dixit. A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system. International Journal of Information Technology, 2019: 1-14.

[5] Hu Chunyu, Chen Yiqiang, Hu Lisha, et al. A novel random forests based class incremental learning method for activity recognition. Pattern Recognition, 2018, 78: 277-290.

[6] Xiao Qinkun, Song Ren. Action recognition based on hierarchical dynamic Bayesian network. Multimedia Tools and Applications, 2018, 77(6): 6955-6968.

[7] Sok Pichleap, Xiao Ting, Azeze Yohannes, et al. Activity Recognition for Incomplete Spinal Cord Injury Subjects using Hidden Markov Models. IEEE Sensors Journal, 2018, 18(15): 6369-6374.

[8] Bilal M'hamed AbidineLamya FerganiBelkacem Fergani, et al. The joint use of sequence features combination and modified weighted SVM for improving daily activity recognition. Pattern Analysis and Applications, 2018, 21(1): 119-138.

[9] Sun Xiaohu, Yu Axiang, Shen Xulin, et al. Abnormal Behavior Recognition Based on Hybrid Attention Mechanism. Computer Engineering and Applications, 2023, 59(5): 140-147.

[10] Liu Yang, Liu Jiang, Zhao Mengyang, et al. Learning appearance-motion normality for video anomaly detection. Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6.

[11] Li Daoheng, Nie Xiushan, Li Xiaofeng, et al. Context-related video anomaly detection via generative adversarial network. Pattern Recognition Letters, 2022, 156: 183-189.

[12] Lee Joo Yeon, NAM Woo Jeoung, Lee Seong Whan. Multi-contextual predictions with vision transformer for video anomaly detection. Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE, 2022: 1012-1018.

[13] Tarik AlafifAnas HadiManal Allahyani, et al. Hybrid classifiers for spatio-temporal abnormal behavior detection, tracking, and recognition in massive Hajj crowds. Elecronics, 2023, 12(5): 1165.

[14] Anas Al-lahhamNurbek TastanZaigham Zaheer, et al.A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised Video Anomaly Detection. arXiv preprint arXiv: 2310.17650, 2024.

[15] WONG Sebastien C, Stamatescu Victor, GATT Adam, et al. Track Everything: Limiting Prior Knowledge in Online MultiObject Recognition. IEEE Transactions on Image Processing, 2017, 26(10): 4669-4683.

[16] Kong Xiangjie, Ma Kai, Hou Shen, et al. Human interactive behavior: A bibliographic review. IEEE Access, 2018, 7: 4611-4628.

[17] Bahram MohammadiMahmood FathyMohammad Sabokrou. Image/video deep anomaly detection: A survey. arXiv preprint arXiv: 2103.01739, 2021.

[18] Xu Dan, Yan Yan, Ricci Elisa, et al. Detecting anomalous events in videos by learning deep representations of appearance and motion. Computer Vision and Image Understanding, 2017, 156: 117-127.

[19] Sabokrou Mohammad, Fathy Mahmood, Hoseini Mojtaba, et al. Realtime anomaly detection and localization in crowded scenes. Proceedings of the 2015 IEEE conference on computer vision and pattern recognition workshops. Piscataway: IEEE, 2015: 56-62.

[20] Sabokrou Mohammad, Fayyaz Mohsen, Fathy Mahmood, et al. Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes. Computer Vision and Image Understanding, 2018, 172: 88-97.

[21] Kim Junbong, Jeong Kwanghee, Choi Hyomin, et al.GAN-based anomaly detection in imbalance problems. Proceedings of the 2020 European Conference on Computer Vision (ECCV). Berlin: Springer, 2020: 128-145.

[22] Tang Yao, Zhao Lin, Zhang Shanshan, et al. Integrating prediction and reconstruction for anomaly detection. Pattern Recognition Letters, 2020, 129: 123-130.

[23] Ramachandra Bharathkumar, Jones Michael J.Street scene: A new dataset and evaluation protocol for video anomaly detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 2569-2578.

[24] Alhothali Areej, Balabid Amal, Alharthi Reem, et al. Anomalous event detection and localization in dense crowd scenes. Multimedia Tools and Applications, 2023, 82(10): 15673-15694.

[25] Liu Yang, Yang Dingkang, Fang Gaoyun, et al. Stochastic video normality network for abnormal event detection in surveillance videos. Knowledge-Based Systems, 2023, 280: 110986.

[26] Alhothali Areej, Balabid Amal, Alharthi Reem, et al. Anomalous event detection and localization in dense crowd scenes. Multimedia Tools and Applications, 2023, 82(10): 15673-15694.

[27] Sattarzadeh Sam, Sudhakar Mahesh, Plataniotis Konstantinos N. SVEA: asmall-scale benchmark for validating the usability of posthoc explainable AI solutions in image and signal recognition. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 4158-4167.

[28] Zhan Cheng, Hu Han, Wang Zhi, et al. Unmanned aircraft system aided adaptive video streaming: A joint optimization approach. IEEE Transactions on Multimedia, 2019, 22(3): 795-807.

[29] Zhang Zhe, MA Shiyao, Yang Zhaohui, et al. Robust Semisupervised Federated Learning for Images Automatic Recognition in Internet of Drones. IEEE Internet of Things Journal, 2022, 10(7): 5733-5746.

[30] Jessie James P. SuarezProspero C. Naval Jr, A survey on deep learning techniques for video anomaly detection. arXiv preprint arXiv: 2009.14146, 2020.

[31] Cai Yiheng, Liu Jiaqi, Guo Yayun, et al. Video anomaly detection with multi-scale feature and temporal information fusion. Neurocomputing, 2021, 423: 264-273.

[32] Xinyang FengDongjin SongYuncong Chen, et al. Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection. Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5546-5554.

[33] Mohammad SabokrouMohammad KhalooeiMahmood Fathy, et al. Adversarially learned one-class classifier for novelty detection. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018: 3379-3388.

[34] Ionescu Radu Tudor, Smeureanu Sorina, Popescu Marius, et al. Detecting abnormal events in video using narrowed normality clusters. Proceedings of the 2019 IEEE winter conference on applications of computer vision (WACV). Piscataway: IEEE, 2019: 1951-1960.

[35] Ionescu Radu Tudor, Khan Fahad ShahbazGeorgescu Mariana-Iuliana, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 7842-7851.

[36] Ramachandra Bharathkumar, Jones Michael J, Vatsavai R. Learning a distance function with a Siamese network to localize anomalies in videos. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 2598-2607.

[37] Gong Suming, Chen Ying. Video Action Recognition Based on Spatio-Temporal Feature Pyramid Module. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2061-2067.

[38] Erkan ?eng?nül, Refik Samet, Qasem Abu Al-Haija, et al. An analysis of artificial intelligence techniques in surveillance video anomaly detection: A comprehensive survey. Applied Sciences, 2023, 13(8): 4956.

[39] García González Jorge, Molina-Cabello Miguel A, Luque-Baena Rafael M, et al. Deep autoencoder architectures for foreground object detection in video sequences based on probabilistic mixture models. Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE, 2020: 3199-3203.

[40] Manoj Kumar Sharma, Debdoot Sheet, Prabir Biswas. Spatiotemporal deep networks for detecting abnormality in videos. Multimedia Tools and Applications, 2020, 79(15): 11237-11268.

[41] P. Kuppusamy, V.C. Bharathi. Human abnormal behavior detection using CNNs in crowded and uncrowded surveillance A survey. Measurement: Sensors, 2022, 24: 100510.

[42] Jaechul Kim, Kristen Grauman, Observe locally, infer globally: a space-time MRF for detecting abnormal activities with in cremental updates. Proceedings of the 2009 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2009: 2921-2928.

[43] Wu Shandong, Brian E. Moore, Mubarak Shah, Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. Proceedings of the 2010 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2010: 2054-2060.

[44] Antonio BarbalauRadu Tudor IonescuMariana-Iuliana Georgescu, et al. SSMTL++: Revisiting self-supervised multi-task learning for video anomaly detection. Computer Vision and Image Understanding, 2023, 229: 103656.

[45] Or HirschornShai Avidan. Normalizing flows for human pose anomaly detection. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 1354 5-13554.

[46] Alessandro FlaboreaLuca Collorone, Guido Maria, et al. Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 10318-10329.

[47] Xiao Jinsheng, Guo Haowen, Xie Hongang, et al. Probabilistic Memory Auto-encoding Network for Abnormal Behavior Detection in Surveillance Videos. Journal of Software, 2023, 34(9): 4362-4377.

[48] Alexander Gepperth, A new perspective on probabilistic image modeling. Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2022: 1-10.

[49] Jonathan HoAjay JainPieter Abbeel, Denoising diffusion probabilistic models. Advances in neural information processing systems, 2020, 33: 6840-6851.

[50] Xiao Jinsheng, Shen Mengyao, Jiang Mingjun, et al. Monitoring vide oabnormal behavior detection with fusion package attentionmechanism. Acta Automatica Sinica, 2022, 48(12): 2951-2959.

[51] Liu Yang, Liu Jing, Lin Jieyu, et al. Appearance-motion united auto encoder framework for video anomaly detection. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2498-2502.

[52] Liu Wenrui, Chang Hong, Ma Bingpeng, et al. Diversity-measurable anomaly detection. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 12147-12156.

[53] Huang Xiangyu, Zhao Caidan, Wu Zhiqiang. Updated version: A Video Anomaly Detection Framework based on Appearance-Motion Semantics Representation Consistency. arXiv preprint arXiv: 2303.05109, 2023.

[54] Andrea BorghesiAndrea BartoliniMichele Lombardi. Anomaly detection using a convolutional winner-take-all auto encoder. Proceedings of the 2017 British machine vision conference. Berlin: Springer, 2017: 1-12.

[55] Gong Dong, Liu Lingqiao, Le Vuong, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 1705-1714.

[56] Sun jingbo, Ji jie. Memory-augmented deep autoencoder model for pedestrian abnormal behavior detection in video surveillance. Infrared and Laser Engineering, 2022, 51(6): 20210680.

[57] Liu Chengming, Xue Ran, Shi Lei, et al. The gating self-attention mechanism and GAN integrated video anomaly detection. Journal of Image and Graphics, 2022, 27(11): 3210-3221.

[58] Chen Dongyue, Yue Lingyi, Chang Xingya, et al. NM-GAN: Noise-modulated generative adversarial network for video anomaly detection. Pattern Recognition, 2021, 116: 107969.

[59] Zhang Qianqian, Feng Guorui, Wu Hanzhou. Surveillance video anomaly detection via non-local U-Net frame prediction. Multimedia Tools and Applications, 2022, 81(19): 27073-27088.

[60] Huang Chao, Wu Zhihao, Wen Jie, et al. Abnormal event detection using deep contrastive learning for intelligent video surveillance system. IEEE Transactions on Industrial Informatics, 2021, 18(8): 5171-5179.

[61] Ashish Singh, Michael J. Jones, Erik G. Learned-Millerv. Eval: Explainable video anomaly localization. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 18717-18726.

[62] Zhang Hongmin, Zhuang Xu, Zheng Jingtian, et al. Optimizing Human Abnormal Behavior Detection Method of YOLO Network. Computer Engineering and Applications, 2023, 59(7): 242-249.

[63] Liu Zhian, Nie Yonngwei, Long chengjiang, et al. A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 13588-13597.

[64] Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, et al. Self-supervised predictive convolutional attentive block for anomaly detection. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 13576-13586.

[65] Yassine Naji, Aleksandr Setkov, Angélique Loesch, et al. Spatio-temporal predictive tasks for abnormal event detection in videos. Proceedings of the 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE, 2022: 1-8.

[66] Radu Tudor Ionescu, Sorina Smeureanu, Bogdan Alexe, et al. Unmasking the abnormal events in video. Proceedings of the 2017 IEEE international conference on computer vision. Piscataway: IEEE, 2017: 2895-2903.

[67] Wu Kaijun, Huang Tao, Wan Dicong, Bai Chenshuai, et al. Research Progress of Video Anomaly Detection Technology. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540.

[68] Liu Yusha, Li Chunliang, Barnabás Póczos. Classifier Two Sample Test for Video Anomaly Detections. Proceedings of the 2018 British machine vision conference. Berlin: Springer, 2018: 71.

[69] Li Tangqing, Wang Zheng, Liu Siying, et al. Deep unsupervised anomaly detection. Proceedings of the IEEE/CVF winter conference on applications of computer vision. Piscataway: IEEE, 2021: 3636-3645.

[70] Hu Jingtao, YU Guang, Wang Siqi, et al. Detecting Anomalous Events from Unlabeled Videos via Temporal Masked Auto-Encoding. Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2022: 1-6.

[71] Pang Guansong, Yan Cheng, Shen Chunhua, et al. Self-trained deep ordinal regression for end-to-end video anomaly detection. Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition. Piscataway: 2020: 12173-12182.

[72] M. Zaigham Zaheer, Arif Mahmood, M. Haris Khan, et al. Generative cooperative learning for unsupervised video anomaly detection. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 14744-14754.

[73] Lin Xiangru, Chen Yuyang, Li Guanbin, et al. A causal inference look at unsupervised video anomaly detection. Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022, 36(2): 1620-1629.

[74] He Kaiming, Chen Xinlei, Xie Saining, et al. Masked Autoencoders Are Scalable Vision Learners. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 16000-16009.

[75] Yuan Hongchun, Cai Zhenyu, Zhou Hui, et al. Transanomaly: Video anomaly detection using video vision transformer. IEEE Access, 2021, 9: 123977-12398.

[76] Kong Xiangjie, Liu Xiaoteng, Behrouz Jedari, et al. Mobile crowd sourcingin smart cities: Technologies, applications, and future challenges. IEEE Internet of Things Journal, 2019,6(5): 8095-8113.

[77] Amit Adam, Ehud Rivlin, Ilan Shimshoni, et al. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(3): 555-560.

[78] Li Weixin, Vijay Mahadevan, Nuno Vasconcelos. Anomaly detection and localization in crowded scenes. IEEE transactions on pattern analysis and machine intelligence, 2013, 36(1): 18-32.

[79] Lu Cewu, Shi Jianping, Jia Jiaya. Abnormal event detection at 150 fps in matlab. Proceedings of the 2013 IEEE international conference on computer vision. Piscataway: IEEE, 2013: 2720-2727.

[80] Liu Wen, Luo Weixin, Lian Dongze, et al. Future frame prediction for anomaly detection: a new baseline. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2018: 6536-6545.

[81] Wan Boyang, Jiang Wenhui, Fang Yuming, et al. Anomaly detection in video sequences: A benchmark and computational model. IET Image Processing, 2021, 15(14): 3454-3465.

[82] Andra AcsintoaeAndrei FlorescuMariana-Iuliana Georgescu, et al. Ubnormal: New benchmark for supervised open-set video anomaly detection. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 20143-20153.

[83] Lu Cewu, Shi Jianping, Wang Weiming, et al. Fast abnormal event detection. International Journal of Computer Vision, 2019, 127: 993-1011.

[84] Wang Shu, Miao Zhenjiang. Anomaly detection in crowd scene. Proceedings of the 10th IEEE International Conference on Signal Processing Proceedings. Piscataway: IEEE, 2010: 1220-1223.

[85] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, et al. Deep cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Transactions on Image Processing, 2017, 26(4): 1992-2004.

[86] Bharathkumar Ramachandra, Michael J. Jones. Street scene: A new dataset and evaluation protocol for video anomaly detection. Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2569-2578.

[87] Liu Yang Li Shuang, Liu Jing, et al. Learning attention augmented spatial-temporal normality for video anomaly detection. Proceedings of the 3rd International Symposium on Smart and Healthy Cities (ISHC). Piscataway: IEEE, 2021: 137-144.

[88] Zhao Mengyang, Liu Yang, Liu Jing, et al. Exploiting spatial-temporal correlations for video anomaly detection. Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE, 2022: 1727-1733.

[89] Liu Yang, Liu Jing, Zhao Mengyang, et al. Learning appearance-motion normality for video anomaly detection. Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2022: 1-6.

[90] Deng Hanqiu, Zhang Zhaoxiang, Zou Shihao, et al. Bi-Directional Frame Interpolation for Unsupervised Video Anomaly Detection. Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (CVPR). Piscataway: IEEE, 2023: 2634-2643.

[91] Shi Chenrui, Sun Che, Wu Yuwei, et al. Video anomaly detection via sequentially learning multiple pretext tasks. Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (CVPR). Piscataway: IEEE, 2023: 10330-10340.

[92] Viet-Tuan Le, Yong-Guk Kim. Attention-based residual autoencoder for video anomaly detection. Applied Intelligence, 2023,53(3): 3240-3254.

[93] Han Zhongyi, Zhou Guanglin, He Rundong, et al. How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary Investigation. arXiv preprint arXiv: 2312.07424, 2023.

[94] Song HanJeff PoolJohn Tran, et al. Learning both weights and connections for efficient neural network. Advances in neural information processing systems, 2015, 28.

[95] Deng Lei, Li Guoqi, Han Song, et al. Model compression and hardware acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 2020, 108(4): 485-532.

[96] Gou Jianping, Yu BaoshengStephen John Maybank, et al. Knowledge distillation: A survey. International Journal of Computer Vision, 2021, 129: 1789-1819.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.