TRUXENONE AND ISOTRUXENONE-BASED POROUS ORGANIC POLYMERS AS METAL-FREE, HETEROGENEOUS PHOTOCATALYSTS FOR VISIBLE-LIGHT-PROMOTED REDUCTION OF LUNG CANCER A549 CELLS
Volume 6, Issue 2, Pp 51-65, 2024
DOI: 10.61784/ejst3007
Author(s)
YongLi Tan*, YeMu Zhu, HaiFeng Duan
Affiliation(s)
The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, Hunan, China.
Corresponding Author
YongLi Tan
ABSTRACT
While porous materials have been widely employed in numerous fields ranging from gas adsorption and separations, light emittance, sensing to energy storage, their applications in reducing respiratory morbidity are limited. In particular, the products obtained in a controlled manner using porous materials and thus applied to limit lung cancer cells multiplication are very rare. Here we report the synthesis of two new truxenone and isotruxenone-based porous organic polymers (POPs) via Friedel-Crafts alkylation/oxidation starting from truxene and isotruxene. These networks are thermally and chemically stable, and demonstrated as the first metal-free, heterogeneous photocatalysts for visible-light-induced tunable benzylic functionalization. Moreover, both POPs can be easily recovered and reused for at least 15 times without any apparent decrease in their photocatalytic activity. The synthetic utility of this newly-developed methodology is demonstrated in the value-added functionalization of chemical feedstocks such as xylenes and mesitylene, the resulting product can be used to reduce the number of lung cancer A549 cells.
KEYWORDS
A549 cells; Heterogeneous photocatalysis; Metal-Free; Porous polymers; Visible-Light
CITE THIS PAPER
YongLi Tan, YeMu Zhu, HaiFeng Duan. Truxenone and isotruxenone-based porous organic polymers as metal-free, heterogeneous photocatalysts for visible-light-promoted reduction of lung cancer A549 cells. Eurasia Journal of Science and Technology. 2024, 6(2): 51-65. DOI: 10.61784/ejst3007.
REFERENCES
[1] Yoon T.P., Ischay M.A., Du J. Visible Light Photocatalysis as a Greener Approach to Photochemical Synthesis. Nat. Chem. 2010, 2(7): 527-532. DOI: https://doi.org/10.1038/nchem.687.
[2] Xuan J., Xiao W.J. Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2012, 51(28): 6828-6838. DOI: https://doi.org/10.1002/anie.201200223.
[3] Prier C.K., Rankic D.A., MacMillan D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113(7): 5322-5363. DOI: https://doi.org/10.1021/cr300503r.
[4] Romero N.A., Nicewicz D.A. Organic Photoredox Catalysis. Chem Rev. 2016, 116(17): 10075-10166. DOI: https://doi.org/ 10.1021/acs.chemrev.6b00057.
[5] Xu Z.-Y., Luo Y., Wang H., Zhang D.-W., Li Z.-T. Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations. Chin. J. Org. Chem. 2020, 40(11): 3777-3793. DOI: https://doi.org/10.6023/cjoc202003070.
[6] Wang T.-X., Liang H.-P., Anito D.A., Ding X., Han B.-H. Emerging Applications of Porous Organic Polymers in Visible-Light Photocatalysis. J. Mater. Chem. A. 2020, 8(15): 7003-7034. DOI: https://doi.org/10.1039/D0TA00364F.
[7] Zhang T., Xing G., Chen W., Chen L.. Porous Organic Polymers: A Promising Platform for Efficient Photocatalysis. Mater. Chem. Front. 2020, 4(2): 332-353. DOI: https://doi.org/10.1039/C9QM00633H.
[8] Ferguson C.T.J., Zhang K.A.I. Classical Polymers as Highly Tunable and Designable Heterogeneous Photocatalysts. ACS Catal. 2021, 11(15): 9547-9560. DOI: https://doi.org/10.1021/acscatal.1c02056.
[9] Liang H.-P., Chen Q., Han B.-H. Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catal. 2018, 8(6): 5313-5322. DOI: https://doi.org/10.1021/acscatal.7b04494.
[10] Luo J., Lu J., Zhang J. Carbazole-Triazine Based Donor-Acceptor Porous Organic Frameworks for Efficient Visible-Light Photocatalytic Aerobic Oxidation Reactions. J. Mater. Chem. A. 2018, 6(31): 15154-15161. DOI: https://doi.org/10.1039/c8ta05329d.
[11] Li X., Ma X., Zhang F., Dong X., Lang X. Selective photocatalytic formation of sulfoxides by aerobic oxidation of sulfides over conjugated microporous polymers with thiazolo[5,4?d] thiazole linkage. Appl. Catal. B: Environ. 2021, 298: 120514-120623. DOI: https://doi.org/10.1016/j.apcatb.2021.120514.
[12] Hao H., Zhang F., Dong X., Lang X. 2D sp2 carbon-conjugated triazine covalent organic framework photocatalysis for blue light-induced selective oxidation of sulfides with O2. Appl. Catal. B: Environ. 2021, 299: 120691-120702. DOI: https://doi.org/10.1016/j.apcatb.2021.120691.
[13] Wang Z.J., Ghasimi S., Landfester K., Zhang K.A.I. Molecular Structural Design of Conjugated Microporous Poly(Benzooxadiazole) Networks for Enhanced Photocatalytic Activity with Visible Light. Adv. Mater. 2015, 27(40): 6265-6270. DOI: https://doi.org/10.1002/adma.201502735.
[14] Battula V.R., Singh H., Kumar S., Bala I., Pal S.K., Kailasam, K. Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catal. 2018, 8(8): 6751-6759. DOI: https://doi.org/10.1021/acscatal.8b00623.
[15] Xu H., Li X., Hao H., Dong X., Sheng W., Lang X. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen. Appl. Catal. B: Environ. 2021, 285: 119796-119806. DOI: https://doi.org/10.1016/j.apcatb.2020.119796.
[16] Wei P., Qi M., Wang Z., Ding S., Yu W., Liu Q., Wang L., Wang H., An W., Wang W. Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. J. Am. Chem. Soc. 2018, 140(13): 4623-4631. DOI: https://doi.org/10.1021/jacs.8b00571.
[17] Xu Z.-Y., Luo Y., Zhang D.-W., Wang H., Sun X.-W., Li Z.-T. Iridium complex-linked porous organic polymers for recyclable, broad-scope photocatalysis of organic transformations. Green Chem. 2020, 22(1): 136-143. DOI: https://doi.org/10.1039/c9gc03688a.
[18] Nailwal Y., Wonanke A.D.D., Addicoat M.A., Pal S.K. A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules. 2021, 54(13): 6595-6604. DOI: https://doi.org/10.1021/acs.macromol.1c00574.
[19] Song C., Nie J., Ma C., Lu C., Wang F., Yang G. 1,2,3-Triazole-based conjugated porous polymers for visible light induced oxidative organic transformations. Appl. Catal. B: Environ. 2021, 287: 119984-119996. DOI: https://doi.org/10.1016/j.apcatb.2021.119984.
[20] Zhi Y., Ma S., Xia H., Zhang Y., Shi Z., Mu Y., Liu X. Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis. Appl. Catal. B: Environ. 2019, 244: 36-44. DOI: https://doi.org/10.1016/j.apcatb.2018.11.032.
[21] Zhang W., Li S., Tang X., Tang J., Pan C., Yu G. Phenothiazine core promoted charge transfer in conjugated microporous polymers for photocatalytic Ugi-type reaction and aerobic selenation of indoles. Appl. Catal. B: Environ. 2020, 272: 118982-118992. DOI: https://doi.org/10.1016/j.apcatb.2020.118982.
[22] Purser S., Moore P.R., Swallow S., Gouverneur V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37(2): 320-330. DOI: https://doi.org/10.1039/b610213c.
[23] Berger R., Resnati G., Metrangolo P., Weber E., Hulliger J. Organic Fluorine Compounds: A Great Opportunity for Enhanced Materials Properties. Chem. Soc. Rev. 2011, 40(7): 3496-3508. DOI: https://doi.org/10.1039/c0cs00221f.
[24] Ong A.L., Kamaruddin A.H., Bhatia S. Current Technologies for the Production of (S)-Ketoprofen: Process Perspective, Process Biochem. 2005, 40(11): 3526-3535. DOI: https://doi.org/10.1016/j.procbio.2005.03.054.
[25] Miao J., Ge H. Palladium-catalyzed chemoselective decarboxylative ortho acylation of benzoic acids with α-oxocarboxylic acids, Org. Lett. 2013, 15(12): 2930-2933. DOI: https://doi.org/10.1021/ol400919u.
[26] Khan S.R., Berendt R.T., Ellison C.D., Ciavarella A.B., Asafu-Adjaye E., Khan M.A., Faustino P.J. Profiles of Drug Substances, Excipients and Related Methodology. 2016, 41: 79-438.
[27] Brewster J.T., Dell’Acqua S., Thach D.Q., Sessler J.L. Classics in Chemical Neuroscience: Donepezil, ACS Chem. Neurosci. 2019, 10(1): 155-167. DOI: https://doi.org/10.1021/acschemneuro.8b00517.
[28] Sagadevan A., Charpe V.P., Ragupathi A., Hwang K.C. Visible Light Copper Photoredox-Catalyzed Aerobic Oxidative Coupling of Phenols and Terminal Alkynes: Regioselective Synthesis of Functionalized Ketones via C≡C Triple Bond Cleavage. J. Am. Chem. Soc. 2017, 139(8): 2896-2899. DOI: https://doi.org/10.1021/jacs.6b13113.
[29] Bloom S., Pitts C.R., Miller D.C., Haselton N., Holl M.G., Urheim E., Lectka T. A Polycomponent Metal-Catalyzed Aliphatic, Allylic, and Benzylic Fluorination. Angew. Chem. Int. Ed. 2012, 51: 10580-10583. DOI: https://doi.org/10.1002/ange.201203642.
[30] Xia J.-B., Zhu C., Chen C. Visible Light-Promoted Metal-Free C-H Activation: Diarylketone- Catalyzed Selective Benzylic Mono- and Difluorination. J. Am. Chem. Soc. 2013, 135(46): 17494-17500. DOI: https://doi.org/10.1021/ja410815u.
[31] Pieber B., Shalom M., Antonietti M., Seeberger P.H., Gilmore K. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors, Angew. Chem. Int. Ed. 2018, 57(31): 9976-9979. DOI: https://doi.org/10.1002/ange.201712568.
[32] Mondal P., Lovisari M., Twamley B., McDonald A.R. Fast Hydrocarbon Oxidation by a High Valent Nickel-Fluoride Complex. Angew. Chem. Int. Ed. 2020, 59(31): 13044-13050. DOI: https://doi.org/10.1002/anie.202004639.
[33] Bower J.K., Cypcar A.D., Henriquez B., Stieber S.C.E., Zhang S. C(sp3)-H Fluorination with a Copper(II)/(III) Redox Couple. J. Am. Chem. Soc. 2020, 142: 8514?8521. DOI: https://doi.org/10.1021/jacs.0c02583.
[34] Andrus M.B. Allylic and benzylic oxidation. In Science of Synthesis, Stereoselective Synthesis, 1st ed.; J.G.D. Vries, G.A. Molander, P.A. Evans, Eds.; Thieme Verlag: Stuttgart., 2011, 469-482.
[35] Goubard F., Dumur F. Truxene: A Promising Scaffold for Future Materials. RSC Adv. 2015, 5: 3521-3551. DOI: https://doi.org/ 10.1039/c4ra11559g.
[36] Shi K., Wang J.-Y., Pei J. π-Conjugated Aromatics Based on Truxene: Synthesis, Self-Assembly, and Applications. Chem. Rec. 2015, 15(1): 52-72. DOI: https://doi.org/10.1002/tcr.201402071.
[37] Das S., Kim H., Kim K. Metathesis in Single Crystal: Complete and Reversible Exchange of Metal Ions Constituting the Frameworks of Metal-Organic Frameworks. J. Am. Chem. Soc. 2009, 131(11): 3814-3815. DOI: https://doi.org/10.1021/ja808995d.
[38] Liu L., Telfer S.G. Systematic Ligand Modulation Enhances the Moisture Stability and Gas Sorption Characteristics of Quaternary Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137(11): 3901-3909. DOI: https://doi.org/10.1021/jacs.5b00365.
[39] Zhang Q., Zhang C., Cao L., Wang Z., An B., Lin Z., Huang R., Zhang Z., Wang C., Lin. W. Fo?rster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping. J. Am. Chem. Soc. 2016, 138(16): 5308-5315. DOI: https://doi.org/10.1021/jacs.6b01345.
[40] Yang X., Hu Y., Dunlap N., Wang X., Huang S., Su Z. , Sharma S., Jin Y., Huang F., Wang X., Lee S.-H., Zhang W. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Angew. Chem. Int. Ed. 2020, 59: 20385-20389. DOI: https://doi.org/10.1002/anie.202008619.
[41] Lin K., Wang Z., Hu Z., Luo P., Yang X., Zhang X., Rafiq M., Huang F., Cao Y. Amino-Functionalised Conjugated Porous Polymers for Improved Photocatalytic Hydrogen Evolution. J. Mater. Chem. A. 2019, 7(32): 19087-19093. DOI: https://doi.org/10.1039/c9ta06219j.
[42] Zhang H., Zhou C., Zheng Y., Zhang X. Isotruxene-Based Porous Polymers as Efficient and Recyclable Photocatalysts for Visible-Light-Induced Metal-Free Oxidative Organic Transformations. Green Chem. 2021, 23(22): 8878-8885. DOI: https://doi.org/10.1039/D1GC03165A.
[43] Dehmlow E.V., Kelle T. Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures? Synth. Commun. 1997, 27(11): 2021-2031. DOI: https://doi.org/10.1080/00397919708006804.
[44] Zhou C., Xuan W., Luo S.-P., Bao Y.-H. One-step, Large-scale Synthesis of Isotruxene. J. Chem. Res. 2018, 42(11): 556-557. DOI: https://doi.org/10.3184/174751918x15403823022089.