Science, Technology, Engineering and Mathematics.
Open Access

RESEARCH PROGRESS ON KEY MECHANISMS AND TARGETS FOR THE NEGATIVE CORRELATION BETWEEN ALZHEIMER’S DISEASE AND CANCER

Download as PDF

Volume 6, Issue 3, Pp 33-38, 2024

DOI: 10.61784/jpmr3013

Author(s)

Feng Tang

Affiliation(s)

Department of Neurology, Nanchong Jialing District People's Hospital/The Jialing Branch of Nanchong Central Hospital, Nanchong 637000, Sichuan, China.

Corresponding Author

Feng Tang

ABSTRACT

Alzheimer's disease (AD) and cancer are both age-related diseases whose incidence and prevalence increase exponentially as the population ages, and which are the leading causes of disability and death, respectively, as well as the most significant threat to human health. It has been observed in more than 10 epidemiological studies that patients with a past history of cancer have a lower risk of developing AD, and that patients with AD have a lower risk of developing cancer in the future. The risk of developing cancer in the future is even lower in patients with AD. AD is mainly caused by irreversible degeneration and death of neurons, whereas cancer is characterised by excessive cell proliferation. The two diseases may share common gene and protein signalling pathways, but they are regulated in different and sometimes opposite directions. In this paper, we provide a review of the possible key mechanisms and targets of AD negatively associated with cancer.

KEYWORDS

Alzheimer's disease; Cancer; P53; Pinl: Wnt signalling pathway; MiRNA

CITE THIS PAPER

Feng Tang. Research progress on key mechanisms and targets for the negative correlation between alzheimer's disease and cancer. Journal of Pharmaceutical and Medical Research. 2024, 6(3): 33-38. DOI: 10.61784/jpmr3013.

REFERENCES

[1] Qin Z, Luo J, VandeVrede L, et al. Design and synthesis of neuroprotective methylthiazoles and modification as NO-chimeras for neurodegeneratve therapy. J Med Chem, 2012, 55(15): 6784-801.

[2] Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev, 2001, 81(2): 741-66.

[3] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021.

[4] Rogers NK, Romero C, SanMartín CD, et al. Inverse Relationship Between Alzheimer's Disease and Cancer: How Immune Checkpoints Might Explain the Mechanisms Underlying Age-Related Diseases. J Alzheimers Dis, 2020, 73(2): 443-454.

[5] Rojas NG, Cesarini M, Etcheverry JL, et al. Neurodegenerative diseases and cancer: sharing common mechanisms in complex interactions. J Integr Neurosci, 2020, 19(1): 187-199.

[6] Ospina-Romero M, Abdiwahab E, Kobayashi L, et al. Rate of Memory Change Before and After Cancer Diagnosis. JAMA Netw Open, 2019, 2(6): e196160.

[7] Frain L, Swanson D, Cho K,et al. Association of cancer and Alzheimer's disease risk in a national cohort of veterans. Alzheimers Dement, 2017, 13(12): 1364-1370.

[8] Nudelman KN, Risacher SL, West JD, et al. Association of cancer history with Alzheimer's disease onset and structural brain changes. Front Physiol, 2014, 5: 423.

[9] Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P, et al. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577, 013 participants of 50 observational studies. Psychother Psychosom, 2014, 83(2): 89-105.

[10] White RS, Lipton RB, Hall CB, et al. Nonmelanoma skin cancer is associated with reduced Alzheimer disease risk. Neurology, 2013, 80(21): 1966-72.

[11] Ou SM, Lee YJ, Hu YW, et al. Does Alzheimer's disease protect against cancers? A nationwide population-based study. Neuroepidemiology, 2013, 40(1): 42-9.

[12] Musicco M, Adorni F, Di Santo S, et al. Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology, 2013, 81(4): 322-8.

[13] Roe CM, Fitzpatrick AL, Xiong C, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology, 2010, 74(2): 106-12.

[14] Attner B, Lithman T, Noreen D, et al. Low cancer rates among patients with dementia in a population-based register study in Sweden. Dement Geriatr Cogn Disord, 2010, 30(1): 39-42.

[15] Roe CM, Behrens MI, Xiong C, et al. Alzheimer disease and cancer. Neurology, 2005, 64(5): 895-8.

[16] Holohan KN, Lahiri DK, Schneider BP, et al. Functional microRNAs in Alzheimer's disease and cancer: differential regulation of common mechanisms and pathways. Front Genet, 2012, 3: 323.

[17] Nixon DW. The Inverse Relationship Between Cancer and Alzheimer's Disease: A Possible Mechanism. Curr Alzheimer Res, 2017, 14(8): 883-893.

[18] Battaglia C, Venturin M, Sojic A, et al. Candidate Genes and MiRNAs Linked to the Inverse Relationship Between Cancer and Alzheimer's Disease: Insights From Data Mining and Enrichment Analysis. Front Genet, 2019, 10:846.

[19] Driver JA, Lu KP. Pin1: a new genetic link between Alzheimer's disease, cancer and aging. Curr Aging Sci, 2010, 3(3): 158-65.

[20] Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol, 2019, 20(4): 199-210.

[21] Houck AL, Seddighi S, Driver JA. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr Aging Sci, 2018, 11(2): 77-89.

[22] De la Monte SM, Sohn YK, Ganju N, et al. P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest, 1998, 78(4): 401-11.

[23] Lu KP. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem Sci, 2004, 29(4): 200-9.

[24] Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science, 1997, 278(5345): 1957-60.

[25] Dong Z, Xu M, Sun X, et al. Mendelian randomization and transcriptomic analysis reveal an inverse causal relationship between Alzheimer's disease and cancer. J Transl Med, 2023, 21(1): 527.

[26] Gholamzadeh Khoei S, Saidijam M, Amini R, et al. Impact of PIN1 Inhibition on Tumor Progression and Chemotherapy Sensitivity in Colorectal Cancer. J Gastrointest Cancer, 2021.

[27] Liou YC, Ryo A, Huang HK, et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci U S A, 2002, 99(3): 1335-40.

[28] Chuang HH, Zhen YY, Tsai YC, et al. Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines, 2021, 9(4).

[29] Rustighi A, Zannini A, Campaner E, et al. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ, 2017, 24(2): 200-211.

[30] Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol, 2020, 8: 120.

[31] Zhu Z, Zhang H, Lang F, et al. Pin1 promotes prostate cancer cell proliferation and migration through activation of Wnt/β-catenin signaling. Clin Transl Oncol, 2016, 18(8): 792-7.

[32] Fan G, Wang L, Xu J, et al. Knockdown of the prolyl isomerase Pin1 inhibits Hep-2 cell growth, migration, and invasion by targeting the β-catenin signaling pathway. Biochem Cell Biol, 2018, 96(6): 734-741.

[33] Wei S, Kozono S, Kats L, et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med, 2015, 21(5): 457-66.

[34] Kozono S, Lin YM, Seo HS, et al. Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun, 2018, 9(1): 3069.

[35] Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature, 2006, 440(7083): 528-34.

[36] Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol, 2001, 60(8): 759-67.

[37] Nie X, Liu H, Liu L, et al. Emerging Roles of Wnt Ligands in Human Colorectal Cancer. Front Oncol, 2020, 10: 1341.

[38] Liu Q, Song J, Pan Y, et al. Wnt5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. Int J Biol Sci, 2020, 16(6): 1023-1034.

[39] Kim MJ, Huang Y, Park JI. Targeting Wnt Signaling for Gastrointestinal Cancer Therapy: Present and Evolving Views. Cancers(Basel), 2020, 12(12).

[40] Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer. Mol Pharmacol, 2020, 97(2): 72-89.

[41] Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev, 2020, 39(3): 933-952.

[42] Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother, 2019, 110: 473-481.

[43] Zhang X, Abreu JG, Yokota C,et al. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell, 2012, 149(7): 1565-77.

[44] Bao J, Yang Y, Xia M, et al. Wnt signaling: An attractive target for periodontitis treatment. Biomed Pharmacother, 2021, 133: 110935.

[45] Li J, Zhang Z, Wang L, et al. The oncogenic role of Wnt10a in colorectal cancer through activation of canonical Wnt/β-catenin signaling. Oncol Lett, 2019, 17(4): 3657-3664.

[46] Garner B, Ooi L. Wnt is here! Could Wnt signalling be promoted to protect against Alzheimer disease?: An Editorial for 'Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20- APP transgenic and wild-type mice' on doi:10.1111/jnc.14278. J Neurochem, 2018, 144(4): 356-359.

[47] Zhou W, Mei J, Gu D, et al. Wnt5a: A promising therapeutic target in ovarian cancer. Pathol Res Pract, 2021, 219: 153348.

[48] Chen Y, Chen Z, Tang Y, et al. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother, 2021, 133: 110946.

[49] Zhang GF, Qiu L, Yang SL, et al. Wnt/β-catenin signaling as an emerging potential key pharmacological target in cholangiocarcinoma. Biosci Rep, 2020, 40(3).

[50] Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, et al. Role of Wnt Signaling in Adult Hippocampal Neurogenesis in Health and Disease. Front Cell Dev Biol, 2020, 8: 860.

[51] Huang Y, Liu L, Liu A. Dickkopf-1: Current knowledge and related diseases. Life Sci, 2018, 209:249-254.

[52] Sun G, Wu L, Sun G, et al. WNT5a in Colorectal Cancer: Research Progress and Challenges. Cancer Manag Res, 2021, 13:2483-2498.

[53] Arredondo SB, Guerrero FG, Herrera-Soto A, et al. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells, 2020, 38(3): 422-436.

[54] Mm Yahya S and Elsayed G H. The role of MiRNA-34 family in different signaling pathways and its therapeutic options. Gene, 2024, 931: 148829.

[55] OROM UA, FC N, AH L. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Molecular cell, 2008, 30(4): 460-71.

[56] Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007, 318(5858): 1931-4.

[57] Singh M, Agarwal V, Pancham P, et al. A Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer's Disease Risk in Older Men with Prostate Cancer. Degener Neurol Neuromuscul Dis, 2024, 14:33-46.

[58] Nikolac Perkovic M, Videtic Paska A, Konjevod M, et al. Epigenetics of Alzheimer's Disease. Biomolecules, 2021, 11(2).

[59] Wu H, Huang M, Lu M, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol, 2013, 71(5): 1159-71.

[60] Dickson JR, Kruse C, Montagna DR, et al. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem, 2013, 127(6): 739-49.

[61] Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS One, 2015, 10(7): e0132767.

[62] Holleman A, Chung I, Olsen RR, et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene, 2011, 30(43): 4386-98.

[63] Tang H, Ma M, Wu Y, et al. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPalpha/miR-125b pathway. Aging Cell, 2019, 18(2): e12902.

[64] Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif, 2021, 54(2): e12913.

[65] Wang P, Zheng D, Qi H, et al. miR-125b enhances metastasis and progression of cancer via the TXNIP and HIF1α pathway in pancreatic cancer. Cancer Biomark, 2021.

[66] Sun B, Zhang Y, Zhou L, et al. The proliferation of cervical cancer is promoted by miRNA-125b through the regulation of the HMGA. Onco Targets Ther, 2019, 12: 2767-2776.

[67] Liu S, Chen Q, Wang Y. MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway. Hum Cell, 2020, 33(1): 185-194.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.