UNIFORM RU NANOPARTICLES WITH MGO SUPPORTED ON BETA ZEOLITE FOR EFFICIENT HYDROGEN GENERATION FROM AMMONIA BORANE HYDROLYSIS
Volume 6, Issue 4, Pp 57-61, 2024
DOI: 10.61784/ejst3027
Author(s)
YanRan Feng1, Feng Wang2*
Affiliation(s)
1College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
2Qingdao Xinding Wanxing New Materials Co., Ltd, Qingdao 266071, Shandong, China.
Corresponding Author
Feng Wang
ABSTRACT
Hydrogen energy has garnered widespread attention as a key component of the future energy landscape. However, the safe storage and transportation of hydrogen remain significant challenges to its widespread adoption. Solid chemical hydrogen storage materials, such as ammonia borane, offer a promising solution by enabling safe storage under conventional conditions while allowing rapid hydrogen release in the presence of noble metal catalysts. Nevertheless, the high cost of these noble metal catalysts limits their practical application. In this study, we developed a highly dispersed Ru-based nanoparticle catalyst (< 2 nm) supported on commercial zeolites using a simple ion exchange method. This approach significantly enhances catalytic performance and increases Ru utilization, effectively reducing catalyst costs. Additionally, incorporating magnesium oxide further enhances catalytic activity, providing a feasible strategy for designing efficient hydrogen production catalysts. This work presents a cost-effective approach to advancing hydrogen energy applications.
KEYWORDS
Metal nanoparticle; Zeolite; Hydrogen energy; Hydrogen generation; Hydrolysis reaction
CITE THIS PAPER
YanRan Feng, Feng Wang. Uniform Ru nanoparticles with MgO supported on Beta zeolite for efficient hydrogen generation from ammonia borane hydrolysis. Eurasia Journal of Science and Technology. 2024, 6(4): 57-61. DOI: 10.61784/ejst3027.
REFERENCES
[1] Barreto, L, Makihira, A, Riahi, K. The hydrogen economy in the 21st century: a sustainable development scenario. Int. J. Hydrogen Energy, 2003, 28(3): 267-284. DOI: 10.1016/S0360-3199(02)00074-5.
[2] Schlapbach, L, Züttel, A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353-358. DOI: 10.1038/35104634.
[3] Zhang, D, Wang, M, Wei, G, et al. High visible light responsive ZnIn2S4/TiO2-x induced by oxygen defects to boost photocatalytic hydrogen evolution. Appl. Surf. Sci, 2023, 622, 156839. DOI: https://doi.org/10.1016/j.apsusc.2023.156839.
[4] Guo, M, Zhan, J, Wang, Z, et al. Supercapacitors as redox mediators for decoupled water splitting. Chin. Chem. Lett, 2023, 34(2): 107709. DOI: https://doi.org/10.1016/j.cclet.2022.07.052.
[5] Zhang, L, Cao, S, Zhang, Y, et al. Regulating lithium-ion transport route via adjusting lithium-ion affinity in solid polymer electrolyte. Chem. Eng. J, 2024, 479, 147764. DOI: https://doi.org/10.1016/j.cej.2023.147764.
[6] Xu, H, Zhang, H, Cui, L, et al. Unravelling the synergy of platinum-oxygen vacancy in CoOx for modulating hydrogenation performance. Chem. Eng. J, 2024, 488, 150841. DOI: https://doi.org/10.1016/j.cej.2024.150841.
[7] Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev, 2009, 38(1): 73-82. DOI: 10.1039/B718842K.
[8] Niaz, S, Manzoor, T, Pandith, AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 2015, 50, 457-469. DOI: 10.1016/j.rser.2015.05.011.
[9] Bai, S, Jia, A, Song, J, et al. Metal-support interactions in heterogeneous catalytic hydrogen production of formic acid. Chem. Eng. J, 2023, 474, 145612. DOI: https://doi.org/10.1016/j.cej.2023.145612.
[10] Meng, W, Sun, S, Xie, D, et al. Engineering defective Co3O4 containing both metal doping and vacancy in octahedral cobalt site as high performance catalyst for methane oxidation. Molecular Catalysis, 2024, 553, 113768. DOI: 10.1016/j.mcat.2023.113768.
[11] Xue, W, Zhao, B, Liu, H, et al. Ultralow Pd bimetallic catalysts boost (de)hydrogenation for reversible H2 storage. Appl Catal B: Environ, 2024, 343, 123574. DOI: 10.1016/j.apcatb.2023.123574.
[12] Yadav, M, Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci, 2012, 5 (12), 9698-9725. DOI: 10.1039/C2EE22937D.
[13] Aardahl, CL, Rassat, SD. Overview of systems considerations for on-board chemical hydrogen storage. Int. J. Hydrogen Energy, 2009, 34(16): 6676-6683. DOI: 10.1016/j.ijhydene.2009.06.009.
[14] Li, J, Cai, T, Feng, Y, et al. Subnanometric Bimetallic Pt-Pd Clusters in Zeolite for Efficient Hydrogen Production and Selective Tandem Hydrogenation of Nitroarenes. Sci. Chi. Chem, 2024, 67(9): 2911-2917. DOI: 10.1007/s11426-024-2132-1.
[15] Wang, L, Li, H, Zhang, W, et al. Supported Rhodium Catalysts for Ammonia–Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms. Angew. Chem. Int. Ed, 2017, 56(17): 4712-4718. DOI: 10.1002/anie.201701089.
[16] Guan, S, Yuan, Z, Zhuang, Z, et al. Why do Single-Atom Alloys Catalysts Outperform both Single-Atom Catalysts and Nanocatalysts on MXene? Angew. Chem. Int. Ed, 2023, 63(4): e202316550. DOI: 10.1002/anie.202316550.
[17] Wang, C, Astruc, D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev, 2021, 50(5): 3437-3484. DOI: 10.1039/D0CS00515K.
[18] Xu, Q, Chandra, M. A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane. J. Alloys Compd, 2007, 446-447, 729-732. DOI: 10.1016/j.jallcom.2007.01.040.
[19] Li, J, Feng, Y, Li, X, et al. Sub-2 nm Ternary Metallic Alloy Encapsulated within Montmorillonite Interlayers for Efficient Hydrogen Generation from Ammonia Borane Hydrolysis. ACS Catal, 2024, 14, 14665-14677. DOI: 10.1021/acscatal.4c03380.
[20] Yang, J, Yang, Z, Li, J, et al. Engineering a hollow bowl-like porous carbon-confined Ru–MgO hetero-structured nanopair as a high-performance catalyst for ammonia borane hydrolysis. Mater. Horiz, 2024, 11(8): 2032-2040. DOI: 10.1039/D3MH01909H.
[21] Zhang, K, Wang, N, Meng, Y, et al. Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal. Chem. Sci, 2024, 15(1): 379-388. DOI: 10.1039/D3SC05851D.
[22] Wang, J, Ma, X, Zhu, Z, et al. Pore engineering in robust carbon nanofibers for highly efficient capacitive deionization. Sep. Purif. Technol, 2024, 332, 125797. DOI: https://doi.org/10.1016/j.seppur.2023.125797.
[23] Sun, Q, Wang, N, Yu, J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. Adv. Mater, 2021, 33(51): 2104442. DOI: https://doi.org/10.1002/adma.202104442.
[24] Zhao, Z, Zhang, T, Feng, Y, et al. Subnanometer palladium-manganese clusters in hydrophilic amino-functionalized zeolites for efficient formic acid dehydrogenation. Chem. Eng. J, 2024, 496, 154194. DOI: https://doi.org/10.1016/j.cej.2024.154194.
[25] Sun, Q, Wang, N, Xu, Q, et al. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. Adv. Mater, 2020, 32(44): 2001818. DOI: https://doi.org/10.1002/adma.202001818.