Science, Technology, Engineering and Mathematics.
Open Access

PLANT MIR157 INHIBITS THE PROLIFERATION OF HEPATOMA CELLS HEPG2 BY TARGETING MTDH

Download as PDF

Volume 6, Issue 3, Pp 48-54, 2024

DOI: https://doi.org/10.61784/jpmr3016

Author(s)

Yang Lou, ShuYang Li, JingLing Li, YuTian Wang, HongWei Xue, Juan Lu*, Xi Chen*

Affiliation(s)

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.

Corresponding Author

Juan Lu, Xi Chen

ABSTRACT

Background: MicroRNAs (miRNAs) play key regulatory roles as oncogenes or anti-oncogenes at the posttranscriptional level in human cancers. Plant miRNAs can regulate mammalian systems across kingdoms. The present study investigated the effects of plant miRNA157 (miR157) on the viability and proliferation of human hepatoma cells and the underlying mechanisms. Method: The potential targets of miR157 were predicted by bioinformatics methods; the targeted regulatory relationship between miR157 and MTDH was detected by dual luciferase reporter assay; hepatoma cells HepG2 were cultured in vitro and divided into control group (transfected with negative control SNC mimics) and miR157 transfection group (transfected with miR157 mimics). After transfection, cell counting kit-8 and colony formation were used to detect cell proliferation ability, and RT-qPCR and Western blot were used to detect the effect of miR157 on MTDH expression in HepG2 cells. Results: miR157 had an inhibitory effect on the proliferative capacity of hepatoma cells HepG2 (P<0.05); dual-luciferase reporter gene assay showed that MTDH is a target gene of miR157; miR157 could be directly targeted to down-regulate the expression of MTDH (P<0.01). Conclusion: These preliminary pieces of evidence suggest that miR157 inhibits the proliferation of HepG2 cells by targeting MTDH.

KEYWORDS

miRNA; MTDH; Hepatoma cells HepG2; Cross-kingdom regulation

CITE THIS PAPER

Yang Lou, ShuYang Li, JingLing Li, YuTian Wang, HongWei Xue, Juan Lu, Xi Chen. Plant miR157 inhibits the proliferation of hepatoma cells HepG2 by targeting MTDH. Journal of Pharmaceutical and Medical Research. 2024, 6(3): 48-54. DOI: https://doi.org/10.61784/jpmr3016.

REFERENCES

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394–424.

[2] La M, Pr M. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics, 2010 ;11(7).

[3] Zhang B, Pan X, Cobb GP, et al. Plant microRNA: A small regulatory molecule with big impact. Dev Biol, 2006, 289(1): 3–16.

[4] D B, P A. MicroRNA target and gene validation in viruses and bacteria. Methods Mol Biol Clifton NJ. 2014, 1107.

[5] Kang S-M, Choi J-W, Lee Y, et al. Identification of microRNA-Size, Small RNAs in Escherichia coli. Curr Microbiol, 2013, 67(5): 609–613.

[6] To KKW, Fong W, Tong CWS, et al. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov, 2020, 15(1): 63–83.

[7] Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res, 2012, 22(1): 107–126.

[8] Lukasik A, Brzozowska I, Zielenkiewicz U, et al. Detection of Plant miRNAs Abundance in Human Breast Milk. Int J Mol Sci, 2017, 19(1): 37.

[9] Witwer KW, McAlexander MA, Queen SE, et al. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol, 2013, 10(7): 1080–1086.

[10] Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res, 2015, 59(10): 1962–1972.

[11] Yang J, Farmer LM, Agyekum AAA, et al. Detection of dietary plant-based small RNAs in animals. Cell Res, 2015, 25(4): 517–520.

[12] Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res, 2015, 25(1): 39–49.

[13] Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A, 2005, 102(33): 11928–11933.

[14] Qi Y, Denli AM, Hannon GJ. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell, 2005, 19(3): 421–428.

[15] Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 2006, 20(7): 759–771.

[16] Li M, Chen T, He J-J, et al. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells, 2019, 8(11): 1385.

[17] Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res, 2016, 26(2): 217–228.

[18] Chen W, Kong J, Lai T, et al. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Sci Rep, 2015, 5: 7852.

[19] Gazzani S, Li M, Maistri S, et al. Evolution of MIR168 paralogs in Brassicaceae. BMC Evol Biol, 2009, 9: 62.

[20] Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature, 2008, 455(7217): 1193–1197.

[21] Hartig JV, F?rstemann K. Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila. Nucleic Acids Res, 2011, 39(9): 3836–3851.

[22] Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932–935.

[23] Chen X. MicroRNA biogenesis and function in plants. FEBS Lett, 2005, 579(26): 5923–5931.

[24] Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A, 2005, 102(10): 3691–3696.

[25] Qi Y, Denli AM, Hannon GJ. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell, 2005, 19(3): 421–428.

[26] Yi C, Lu L, Li Z, et al. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res, 2024.

[27] Yan G, Xiao Q, Zhao J, et al. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release Off J Control Release Soc, 2024, 367: 425–440.

[28] Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab, 2018, 15(1): 68.

[29] Cortez MA, Anfossi S, Ramapriyan R, et al. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer, 2019, 58(4): 244–253.

[30] Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol, 2022, 19(3): 151–172.

[31] Qin S, Chan SL, Gu S, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet Lond Engl, 2023, 402(10408): 1133–1146.

[32] Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2023, 20(4): 203–222.

[33] Komoll R-M, Hu Q, Olarewaju O, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol, 2021, 74(1): 122–134.

[34] Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137(6): 1005–1017.

[35] Lim L, Balakrishnan A, Huskey N, et al. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatol Baltim Md, 2014, 59(1): 202–215.

[36] Hou D, He F, Ma L, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem, 2018, 57: 197–205.

[37] Liu J, Wang F, Weng Z, et al. Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture. Genomics, 2020, 112(5): 2949–2958.

[38] Liu J, Wang F, Song H, et al. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J Nutr Biochem, 2021, 92: 108627.

[39] Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem, 2022, 106: 235–280.

[40] Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res Off J Am Assoc Cancer Res, 2009, 15(18): 5615–5620.

[41] Kang D-C, Su Z-Z, Sarkar D, et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene, 2005, 353(1): 8–15.

[42] Lee S-G, Jeon H-Y, Su Z-Z, et al. Astrocyte elevated gene-1 contributes to the pathogenesis of neuroblastoma. Oncogene, 2009, 28(26): 2476–2484.

[43] Li J, Zhang N, Song L-B, et al. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res Off J Am Assoc Cancer Res, 2008, 14(11): 3319–3326.

[44] Kikuno N, Shiina H, Urakami S, et al. Retraction Note: Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene, 2022, 41(45): 4981.

[45] Yu C, Chen K, Zheng H, et al. Overexpression of astrocyte elevated gene-1 (AEG-1) is associated with esophageal squamous cell carcinoma (ESCC) progression and pathogenesis. Carcinogenesis, 2009, 30(5): 894–901.

[46] Jian-bo X, Hui W, Yu-long H, et al. Astrocyte-elevated gene-1 overexpression is associated with poor prognosis in gastric cancer. Med Oncol Northwood Lond Engl, 2011, 28(2): 455–462.

[47] Yoo BK, Emdad L, Su Z, et al. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J Clin Invest, 2009, 119(3): 465–477.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.