Science, Technology, Engineering and Mathematics.
Open Access

EFFECT OF FREQUENCY ON LOSSES IN A 77K MINIATURE PNEUMATIC STIRLING CRYOCOOLER

Download as PDF

Volume 2, Issue 2, Pp 44-53, 2024

DOI: https://doi.org/10.61784/wjer3006

Author(s)

GengChen Liu1*, AnKuo Zhang1, Bo Yu2, YangPing Zeng2, Shu Wang2

Affiliation(s)

1Department of Refrigeration and Cryogenic Engineering, Shanghai Ocean University, Shanghai 201306, China.

2Cryocooler Development Department, Zhejiang JueXin Microelectronics Co, Ltd, Lishui 323000, Zhejiang, China.

Corresponding Author

GengChen Liu

ABSTRACT

This paper investigates the impact of frequency on the losses within a 77K miniature pneumatic Stirling cryocooler. Low-temperature cryocoolers are essential for providing a low-temperature working environment for high-performance cooled thermal imaging detectors. Stirling cryocoolers can achieve a higher relative Carnot efficiency under low heat load conditions. By establishing a one-dimensional numerical model and analyzing the mechanisms of various internal losses, this study examines the trends of internal energy loss within different components as a function of working frequency, ultimately determining the optimal frequency for the Stirling cryocooler. The results indicate that flow resistance loss, non-ideal heat transfer loss, axial conduction loss, and shuttle loss are the primary loss types in miniature pneumatic Stirling cryocoolers. Experimental testing and analysis confirm the accuracy of the numerical simulation results and demonstrate the performance of the cryocooler at different frequencies. The cryocooler can achieve a cooling capacity of 905 mW@77 K@ 24.2 Win at its optimal operating condition. This study provides a theoretical basis and experimental support for the design and optimization of miniature Stirling cryocoolers.

KEYWORDS

Stirling cryocooler; Frequency; Losses; Effect; Pneumatic; Mid-wave infrared detector

CITE THIS PAPER

GengChen Liu, AnKuo Zhang, Bo Yu, YangPing Zeng, Shu Wang. Effect of frequency on losses in a 77k miniature pneumatic stirling cryocooler. World Journal of Engineering Research. 2024, 2(2): 44-53. DOI: https://doi.org/10.61784/wjer3006.

REFERENCES

[1]Zhang Y, Wang X, Huang S, et al. Performance of a Highly Integrated Micro Linear Stirling Cooler with Active Vibration Cancellation. IOP Conference Series: Materials Science and Engineering, 2024: 130143. DOI: https://doi.org/10.1088/1757-899X/1301/1/012143.

[2]Xi Z, Zhang X, Jiang H. Heat-dynamics network model and energy analysis of a miniature free piston Stirling cryocooler for application of high operating temperature infrared detector. International Journal of Refrigeration, 2024. DOI: https://doi.org/10.1016/j.ijrefrig.2024.08.014.

[3]Han Y, Zhang A. Cryogenic technology for infrared detection in space. Scientific Reports, 2022, 12: 2349. DOI: https://doi.org/10.1038/s41598-022-06216-5.

[4]Willems D, Arts R, Buist J, et al. Synergies between designed-for-space and tactical cryocooler developments, ICC, 2018.

[5]Sun J, Zeng Y, Huang T, et al. A 150 K Micro Linear Split Stirling Cryocooler for High Operating Temperature Infrared Detectors. International Cryogenic Engineering Conference and International Cryogenic Materials Conference, Springer, 2022: 724–31. DOI: https://doi.org/10.1007/978-981-99-6128-3_94.

[6]Nussberger M, Zehner S, Withopf A, et al. Update on AIM HOT cooler developments. Infrared Technology and Applications XLV, 2019, 11002: 54-62. DOI: https://doi.org/10.1117/12.2520488.

[7]Yun L, Wei H, Wenfan Y, et al. HOT linear cooler developments at KIP. Third International Computing Imaging Conference (CITA 2023), 2023, 12921: 427–36. DOI: https://doi.org/10.1117/12.2688444.

[8]Arts R, Martin JY, Willems D, et al. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics. SPIE Defense + Security, 2015. DOI: https://doi.org/10.1117/12.2176323.

[9]Arts R, Martin JY, Willems D, et al. Miniature Stirling cryocoolers at Thales Cryogenics: qualification results and integration solutions. SPIE Defense + Security, 2016. DOI: https://doi.org/10.1117/12.2228681.

[10]Willems D, Veer BD, Arts R, et al. High-availability single-stage Stirling coolers with high power density. IOP Conference Series Materials Science and Engineering, 2020, 755: 012044. DOI: https://doi.org/10.1088/1757-899X/755/1/012044.

[11]Filis A, Carmiel M, Nachman I. Ricor’s advanced rotary and linear miniature cryocoolers for HOT IR detectors. Defense + Commercial Sensing, 2022.

[12]Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers. Infrared Technology and Applications XXXIII, 2007, 6542: 823–34. DOI: https://doi.org/10.1117/12.715622.

[13]Veprik A, Gedeon D, Radebaugh R, et al. Low-cost cryogenic technologies for high-operating temperature infrared imaging. Infrared Technology and Applications XLIX, 2023, 12534: 60–77. DOI: https://doi.org/10.1117/12.2664389.

[14]Veprik A, Refaeli R, Wise A, et al. Disruptive cryocoolers for commercial IR imaging. Infrared Technology and Applications XLVIII, 2022, 12107: 120–32. DOI: https://doi.org/10.1117/12.2618257.

[15]Mabrouk MT, Kheiri A, Feidt M. Effect of leakage losses on the performance of a β type Stirling engine. Energy, 2015, 88:111–7. DOI: https://doi.org/10.1016/j.energy.2015.05.075.

[16]Li R, Grosu L, Queiros-Conde D. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method. Energy Conversion and Management, 2016, 124: 517–27. DOI: https://doi.org/10.1016/j.enconman.2016.07.047.

[17]Hachem H, Gheith R, Aloui F, et al. Technological challenges and optimization efforts of the Stirling machine: A review. Energy Conversion and Management, 2018, 171: 1365–87. DOI: https://doi.org/10.1016/j.enconman.2018.06.042.

[18]Parlak N, Wagner A, Elsner M, et al. Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions. Renewable Energy, 2009, 34: 266–73. DOI: https://doi.org/10.1016/j.renene.2008.02.030.

[19]Swift GW. Thermoacoustics: A unifying perspective for some engines and refrigerators. Springer, 2017.

[20]Wang B, Guo Y, Chao Y, et al. Acoustic-Mechanical-Electrical (AcME) coupling between the linear compressor and the Stirling-type cryocoolers. International Journal of Refrigeration, 2019, 100: 175–83. DOI: https://doi.org/10.1016/j.ijrefrig.2019.01.023.

[21]Bo W, Yijun C, Haoren W, et al. A miniature Stirling cryocooler operating above 100 Hz down to liquid nitrogen temperature. Applied Thermal Engineering, 2021, 186: 116524. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116524.

[22]Getie MZ, Lanzetta F, Bégot S, et al. Reversed regenerative Stirling cycle machine for refrigeration application: A review. International Journal of Refrigeration, 2020, 118: 173–87. DOI: https://doi.org/10.1016/j.ijrefrig.2020.06.007.

[23]Ahmadi MH, Ahmadi M-A, Pourfayaz F. Thermal models for analysis of performance of Stirling engine: A review. Renewable and Sustainable Energy Reviews, 2017, 68: 168–84. DOI: https://doi.org/10.1016/j.rser.2016.09.033.

[24]Hachem H, Gheith R, Aloui F, et al. Optimization of an air-filled Beta type Stirling refrigerator. International Journal of Refrigeration, 2017, 76: 296–312. DOI: https://doi.org/10.1016/j.ijrefrig.2017.02.019.

[25]Li R, Grosu L. Parameter effect analysis for a Stirling cryocooler. International Journal of Refrigeration, 2017, 80:92–105. DOI: https://doi.org/10.1016/j.ijrefrig.2017.05.006.

[26]Tanaka M, Yamashita I, Chisaka F. Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow. JSME International Journal Ser 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1990, 33: 283–9. DOI: https://doi.org/10.1299/jsmeb1988.33.2_283.

[27]Rohsenow WM, Hartnett JP, Ganic EN. Handbook of heat transfer fundamentals, 1985.

[28]Gedeon D, Wood JG. Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts. 1996.

[29]Li R, Grosu L, Queiros-Conde D. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method. Energy Conversion and Management, 2016, 124: 517–27. https://doi.org/10.1016/j.enconman.2016.07.047.

[30]Pfeiffer J, Kuehl H-D. Optimization of the appendix gap Design in Stirling Engines. Journal of Thermophysics and Heat Transfer, 2016, 30: 831–42. DOI: https://doi.org/10.2514/1.T4729.

[31]Segado MA, Brisson JG. Appendix Gap Losses with Pressure-Driven Mass Flows. ICC, 2012.

[32]Strauss JM, Dobson RT. Evaluation of a second order simulation for Sterling engine design and optimisation. Journal of Energy in Southern Africa, 2010, 21: 17–29.

[33]Shendage D, Kedare S, Bapat S. Cyclic analysis and optimization of design parameters for Beta-configuration Stirling engine using rhombic drive. Applied Thermal Engineering, 2017, 124: 595–615. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.075.

[34]Mahmoodi M, Pirkandi J, Alipour A. Numerical simulation of beta type stirling engine considering heat and power losses. Iranian Journal of Mechanical Engineering Transactions of the ISME, 2014, 15: 5–27. DOI: https://doi.org/20.1001.1.16059727.2014.15.2.1.4.

[35]Cun-Quan Z, Yi-Nong W, Guo-Lin J, et al. Dynamic simulation of one-stage Oxford split-Stirling cryocooler and comparison with experiment. Cryogenics, 2002, 42: 577–85. DOI: https://doi.org/10.1016/S0011-2275(02)00098-X.

[36]Timoumi Y, Tlili I, Nasrallah SB. Design and performance optimization of GPU-3 Stirling engines. Energy, 2008, 33: 1100–14. DOI: https://doi.org/10.1016/j.energy.2008.02.005.

[37]Getie MZ. Numerical modeling and optimization of a regenerative Stirling refrigerating machine for moderate cooling applications. PhD Thesis. Université Bourgogne Franche-Comté, 2021.

[38]Waele ATAM de, Liang W. Basic dynamics of split Stirling refrigerators. Cryogenics, 2008, 48: 417–25. DOI: https://doi.org/10.1016/j.cryogenics.2008.04.004.

[39]Srinivasan KV, Manimaran A, Arulprakasajothi M, et al. Design and development of porous regenerator for Stirling cryocooler using additive manufacturing. Thermal Science and Engineering Progress, 2019, 11: 195–203. https://doi.org/10.1016/j.tsep.2019.03.013.

[40]Liu S, Jiang Z, Ding L, et al. Impact of operating parameters on 80 K pulse tube cryocoolers for space applications. International Journal of Refrigeration, 2019, 99: 226–33. DOI: https://doi.org/10.1016/j.ijrefrig.2018.12.026.

All published work is licensed under a Creative Commons Attribution 4.0 International License. sitemap
Copyright © 2017 - 2024 Science, Technology, Engineering and Mathematics.   All Rights Reserved.